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ABSTRACT

Two “smart” interpolation procedures are presented and assessed with respect to their ability to estimate
annual-average air temperatures at unsampled points in space from available station averages. Smart approaches
examined here improve upon commonly used procedures in that they incorporate spatially high-resolution
digital elevation information, an average environmental lapse rate, and/or another higher-resolution longer-
term average temperature field. Two other straightforward or commonly used interpolation methods also are
presented and evaluated as benchmarks to which the smart interpolators can be compared. Interpolation from
a spatially high-resolution, long-term-average air temperature climatology serves as a first approximation, while
“traditional” interpolation (from a single realization of annual average air temperature on a single station
network ) is the other benchmark. Traditional interpolation continues to be the most commonly used interpolation
approach within many of the atmospheric and environmental sciences.

Smart approaches are significantly more accurate than either traditional methods or estimates spatially in-
terpolated from a high-resolution climatology alone. A smart interpolation method that makes combined use
of a digital elevation model (DEM ) and traditional interpolation was nearly 24% more accurate than traditional
interpolation by itself. Average error associated with this DEM-assisted interpolation algorithm, for interpolating
yearly average air temperatures in the United States, was 0.44°C. The other smart method that was evaluated
combines DEM information with a high-resolution average air temperature field. It was even more accurate,
as expressed in an overall average interpolation error of only 0.38°C per year, which makes it some 34% more
accurate than traditional interpolation. It is likely that the performance of smart interpolation, relative to
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traditional interpolation, will be even better when used with relatively sparse station networks.

1. Introduction

Weather station networks with long-term records
and good spatial coverage are uncommon ( Willmott
et al. 1994). Two problems arise from this paucity of
well-conditioned observational networks. Estimating a
time-averaged weather or climate variable (e.g., annual-
average air temperature) at unsampled locations by
spatial interpolation is relatively unreliable, and in turn,
areal averages made from the network observations
can be biased. It is necessary, therefore, to develop spa-
tial estimation methods that are more reliable than tra-
ditional interpolation methods. Our interest here then
is to present and test spatial interpolation algorithms
that can be used to estimate time-averaged (e.g., annual
average) point air temperatures from relatively low
resolution station networks. More specifically, we con-
sider straightforward approaches that make use of ad-
ditional information, information that is spatially cor-
related with the interpolate (annually averaged air
temperature, in this instance ). Simple meteorological
(lapse rate) theory also informs our interpolation pro-
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cedure. Related multivariate interpolation methods,
such as Daly et al.’s (1994) somewhat more compli-
cated approach to interpolating precipitation, also are
beginning to appear in the meteorological and clima-
tological literature. Guided both by theory and by spa-
tial correlations, such approaches are termed ‘“‘smart”
interpolators.

2. Spatial estimation of annually averaged air
temperature

a. Traditional interpolation

Traditional interpolation methods include applica-
tions of spatial regression, thin-plate splines, kriging,
and inverse-distance weighting. While each performs
somewhat differently, all estimate average air temper-
ature with accuracies on the same order (Robeson
1994; Ishida and Kawashima 1993). At its most generic
level, traditional interpolation can be expressed as

Ti = IlTaey, X, 8], (1)

where Ty is the interpolated annual-average air tem-
perature at any location k, T, is a vector that contains
ny [ = n(k)] neighboring annual-average station ob-
servations—each of which influences T, A and ¢ are
the corresponding n-element longitude and latitude
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vectors, and I(x, N\, @) is the interpolation function.
While a number of traditional interpolation functions
would adequately represent I(x, A, ¢), a previously
presented inverse-distance algorithm is used here
(Shepard 1968; Willmott et al. 1985a). It can be written

i
. 2 wal(T; + AT;)
Tk = =l

; (2)

ni
IZI Wik

where i is a station location, k is the location of the
estimate, »; is the number of nearby stations that in-
fluence the estimate at location k, 7; is an annual av-
erage air temperature at station i, AT; is a gradient
estimate at station i, and T is the spatially interpolated
temperature at location k. Inverse-distance weighting
means that each w;, is some function of the inverse
distance between station i and location k.

Based on spherical rather than planar geometry, the
Willmott et al. (1985a) traditional interpolation al-
gorithm [used as 7(x, A, ¢) herein] weights (wj) the
station temperatures primarily based on powers (<2)
of inverse distance. The weights also account for spatial
autocorrelation among clusters of the 7, nearby sta-
tions, using an interstation cosine weighting function.
A simple (local) extrapolator additionally allows 7 to
exceed the range within T, ), when estimated spatial
gradients (AT;) at the m; nearby stations warrant it.
The number of locally influential stations () is, on
the average, 7—although this number can be as low
as 4 (when the station network is sparse locally) or as
high as 10 (when the network is dense locally). None
of the parameters (e.g., n, or the powers of inverse
distance) are optimized (although they can be) in order
to maintain a high-level of computational efficiency.
Even without optimization, as Willmott and Robeson
(1995), Bussiéres and Hogg (1989), Weber and Eng-
lund (1992), and others have shown, this and related
interpolators are surprisingly accurate. For a fuller de-
scription of the algorithm, the reader is referred to
Willmott et al. (1985a).

b. Topographically informed interpolation

One way to enhance the traditional interpolation of
annual-average air temperature is to exploit the rela-
tionship between air temperature and elevation. Re-
cently available, spatially high-resolution digital ele-
vation models (DEMs) make this feasible (National
Geophysical Data Center 1993). Elevational effects on
air temperature interpolation have been implicitly
(statistically ) included by several authors (e.g., Ishida
and Kawashima 1993). Our implementation attempts
to include elevational influences in a more physically
meaningful, yet straightforward, way.

Station elevations first are estimated from a DEM
(discussed in section 3¢). Estimated, rather than actual,
station elevations are used for consistency and because
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actual station elevations are unavailable for many of
the world’s historical station records. An annual-av-
erage sea level air temperature at station / then can be
estimated from

ST,'=T,'+FZ,', (3)

where T' is an average environmental lapse rate (T’
~ 6.5 X 1072 °C m™), z; is the elevation at station i,
and ,T; is the estimated annual-average air temperature
at sea level for station i. Annual-average sea level air
temperature at grid point j then becomes

SYA} = I[xTn(f)y As ¢]’ (4)

where (T, is a vector of n; [n; = n(j)] nearby annual-
average sea level air temperatures that influence 77,
and grid point j replaces generic location k. Finally,
air temperature at grid point j is estimated from the
DEM according to

T;=,T;- Tz, (5)

where z; is a DEM-estimated elevation at grid point j.

¢. Climatologically aided interpolation (CAI)

Another approach is to make use of a second air
temperature field, one observed over a different time
period but on a much higher spatial resolution station
network (Willmott and Robeson 1995). Termed cli-
matologically aided interpolation (CAI), this approach
begins by interpolating climatologically averaged sta-
tion air temperatures observed on the higher-resolution
station network to the locations of the stations in the
lower-resolution network. Interest is in estimating the
annually averaged air temperature field observed on
the lower-resolution network, but at unsampled loca-
tions. Our primary purpose in presenting CAI here is
not to evaluate it [as Willmott and Robeson (1995)
have done]; rather, our goal merely is to describe CAI,
as CAI is a component of the “topographically and
climatologically informed” algorithm discussed below
(section 2d).

A difference between the observed annually averaged
temperature of interest (on the lower-resolution station
network) and an interpolated higher-resolution cli-
matological average temperature (at a lower-resolution
station) then is obtained from

6Ti=Ti_f'i, (6)

where 67 is the difference between the lower-resolution
annual-average station temperature of interest (77;) and
T,—the climatological average temperature interpo-
lated from the higher-resolution network to lower-res-
olution station i, according to 7; = I[T,q), N, ¢]. The
vector T, contains nearby temperatures observed on
the higher-resolution station network that influence the

estimate of f‘,» . Nearby differences (67;), as well as the
climatologically averaged air temperatures from the
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FIG. 1. Station locations of (a) all 1228 stations of the low-resolution HCN network
and (b) the 5685-station high-resolution Legates and Willmott (1990) network.

higher-resolution station network, then are interpolated
to grid point j. Expressed generically, the estimation
is

8T; = I[6T, gy, N, ¢] (7N

and
T, = I[Tag), N, 8], (8)

where 67 and 7} are the interpolated temperature dif-
ference and higher-resolution climatologically averaged
air temperature at grid point j, respectively. The CAI
annual-average air temperature estimate at grid point
Jj then is

Ty = oT;+ T, 9)

Willmott and Robeson (1995) demonstrated that CAI
can reduce interpolation errors associated with inter-
polating average temperatures over continental-scale
areas by more than 50%. A somewhat subtle aspect of
CAl, which contributes to its accuracy, is bias-correc-
tion information about the underlying high-resolution
climatology that resides within the 877 field and con-
sequently within the 67 field. When 67 is added back
onto T}, the estimated Tj field then approaches the T;
field in accuracy and ‘“‘unbiasedness.” Willmott and
Robeson (1995) elaborate on this aspect of CAIL

d. Topographically and climatologically informed
interpolation

As DEM-aided interpolation and CAI explain cor-
related but somewhat different components of the spa-
tial variance, their combined application should further
reduce interpolation error. Our approach is to first
reinterpolate the higher-resolution climatologically
averaged air temperature field to the nodes of the DEM
as well as to the lower-resolution stations, using our
DEM /mean environmental lapse rate algorithm. This

has the effect of improving the spatial accuracy of the
higher-resolution (climatological ) air temperature field.

As before, the higher-resolution (climatologically
averaged ) station temperatures are reduced to sea level
at the I rate. Estimated higher-resolution (climatolog-
ically averaged ) sea level air temperatures then are in-
terpolated to the DEM grid, as well as to the lower-
resolution air temperature station network. Interpo-
lated higher-resolution sea level air temperatures at
each DEM grid point j, and at lower-resolution station
i, are then raised to the DEM grid point and DEM-
estimated station (i) heights at the I' rate.

With the new (DEM aided) higher-resolution (cli-
matologically averaged) air temperatures estimated at
the desired DEM nodes ( Tj) and at the lower-resolution
stations ( T; ), CAlI is performed. The calculation is

0T =T, — T (10)
and
Ty = I[6T, gy, N, ¢ + T, (11)

where the temperature-difference vector [6T, ;] has
the same interpretation as in Eq. (7) except that the
differences are taken with respect to the DEM-aided
interpolations of higher-resolution temperature rather
than with respect to the traditionally interpolated
higher-resolution temperature field (Willmott and
Robeson 1995).

3. Air temperature and elevation data for the United
States

Our illustrations and tests of the above-described in-
terpolation methodologies are made by estimating
yearly average temperatures at unsampled locations
within the United States Historical Climatology Net-
work (HCN) (Karl et al. 1990). This is our lower-
resolution network. Legates and Willmott’s (1990) av-
erage air temperature climatology serves as our higher-
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resolution observational (station) network. A very high
resolution DEM also is used to obtain the georeferenced
heights (z; and z;) for station and grid networks. Per-
tinent properties of each of these data bases are outlined
below.

a. HCN time series of air temperature

Air temperature data within the HCN include time
series of monthly maximum, minimum, and mean air
temperature for 1228 stations in the contiguous United
States (Fig. 1a). The majority of these stations have
serially complete records, back through 1920 (Fig. 2).
Our analyses (below) are based on the annually aver-
aged station air temperatures only. While both original
(unadjusted ) and adjusted HCN monthly temperatures
are encoded (with confidence estimates for the adjusted
temperatures ), we use the original data, primarily be-
cause the adjustments involve interstation correlations
(an implicit spatial interpolation method). If we had
used the adjusted station records, our interpretations
of interpolator efficacy would have been less clear. In-
asmuch as the unadjusted HCN temperatures are more
representative of averages contained in most historical
station-record archives, interpolating the original tem-
peratures also is a more typical application. Use of the
original HCN temperatures additionally provides a
somewhat more challenging test for the interpolation
algorithms.

b. Legates and Willmott’s mean air temperature

fields

Legates and Willmott (1990) compiled a spatially
high-resolution global archive of mean monthly and
annual surface air temperature from some 10 sources.
The data were screened for a variety of errors, and
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FIG. 2. Number of HCN stations available for each year (dashed
line). Time series of estimated annual average air temperature over
the United States from 1920 through 1987 is also plotted (solid line).
Each yearly average was obtained by spatially integrating an inter-
polated field of the annual HCN averages. Interpolations were made
by the topographically and climatologically informed interpolation
algorithm (section 2d).
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FIG. 3. Annual average air temperature over the United States
based upon a DEM-enhanced interpolation from the Legates and
Willmott (1990) station archive.

redundant station records were discarded. It remains
one of the highest spatial-resolution global air temper-
ature archives in existence. Since Legates and Will-
mott’s main purpose was to compile a spatially high-
resolution station air temperature database, long-term
station averages from different averaging periods were
included. Including stations with variable long-term
record lengths was and is desirable because more of
the unexplained variance in annual and longer-term
average air temperature is spatial than is temporal.
More specifically, at the spatial resolutions of most
available longer-term station-record archives, more of
the uncertainty in estimating annual and longer-term
average air temperature at unsampled locations (be-
tween the stations) derives from between-station spatial
variability than from unsampled temporal variability
(Willmott and Robeson 1995). Long-term station
means from within the contiguous United States (5685
of them) are used here (Fig. 1b) to represent the spa-
tially correlated higher-resolution temperature field
(Fig. 3), drawn from the climatological record.

¢. Digital elevation data

Georeferenced heights for the stations and grid points
were drawn from a DEM cooperatively compiled by
the U.S. Geological Survey (USGS), the National
Geodetic Survey (NGS), the Defense Mapping Agency
(DMA), and the National Geophysical Data Center
(NGDC) (1993). The DEM elevations that we use are
encoded as 30” of latitude by 30" of longitude tile av-
erages. The 30”-average DEM elevation for the cell
within which a station or grid point falls is used as the
station or gridpoint height.
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DEM Height vs. Station Height (LW)
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DEM Height vs. Station Height (HCN})
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FIG. 4. Scatterplots of the DEM estimates (30" averages) of station elevation vs the actual recorded station elevations
for (a) the Legates and Willmott climatology and (b) the HCN station network.

Encoded documentation (on the source CD-ROM)
indicates that this 30” DEM was derived from a DMA
digitization of 1:250 000 scale topographic maps. The
resulting digital terrain map (DTM) contained point
data at a spatial resolution of 3”. These elevations then
were sampled at a 30” resolution and each selected
elevation was rounded to the nearest 20 ft. A copy of
this 30” DTM then was transmitted to the NGS, where
“corrections were made.” It also was reformatted by
NGS and the elevations were rounded to the nearest
10 m. The 30" tile averages that we use (each is an
average of four NGS corner elevations) were made by
the USGS and distributed by the NGDC.

4. Performance of interpolators

Simple cross validation is employed to evaluate
comparatively the performance of each interpolation
method. Errors are estimated by removing one station
from the HCN network at a time and then interpolating
the annual-average air temperature observed on it from
the corresponding average temperatures observed on
the other (remaining) stations. This process is repeated

TABLE 1. Summary of cross-validation errors
for the HCN network.

Interpolation method MAE rmse
DEM-assisted LW climatology 0.73 1.00
Traditional with HCN 0.58 0.98
DEM-assisted with HCN 0.44 0.71
DEM-assisted LW + CAI 0.38 0.64

for all n stations, with each removed station being rein-
serted back into the network after it has been inter-
polated. Interpolation error at each HCN station then
can be represented by (7; — T;). When Legates and
Willmott’s station climatology informs the interpolator,
and the HCN station being cross validated occurs at
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FIG. 5. Time series of spatially averaged MAEs (for each year)
associated with the yearly average HCN station temperatures inter-
polated to and cross validated at the HCN stations. Interpolators
include (a) the DEM-enhanced version of Legates and Willmott’s
long-term-average field, which assumes no temporal variability (dotted
line), (b) traditional interpolations from each of the yearly HCN sta-
tion networks alone (short-dashed line), (c) topographically informed
(by the DEM) interpolations from each of the yearly HCN station
networks (longer-dashed line), and (d) topographically and clima-
tologically (by the DEM-enhanced Legates and Willmott average
fields) assisted interpolations from each of the yearly HCN station
networks (solid line).
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FiG. 6. Estimated spatial distributions of time-averaged (1920-87) yearly cross-validated in-
terpolation errors (MAEs) at the HCN stations. Interpolators include (a) the DEM-enhanced
version of Legates and Willmott’s long-term-average field, which assumes no temporal variability,
(b) traditional interpolations from each of the yearly HCN station networks alone, (¢) topograph-
ically informed (by the DEM) interpolations from each of the yearly HCN station networks, and
(d) topographically and climatologically (by the DEM-enhanced Legates and Willmott average
fields) assisted interpolations from each of the yearly HCN station networks.
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the same location as a Legates and Willmott station, other characteristics of cross validation also should be
the collocated Legates and Willmott station is tem- mentioned. As with interpolation in general, ill-con-
porarily removed along with the HCN station. Two  ditioned station networks may bias the cross-validated
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error fields. Cross-validation errors also may exceed
actual interpolation errors, since the network is slightly
degraded (to » — 1 stations) making it more sparse
locally. “Real’ accuracy then would be somewhat bet-
ter than reported cross-validation accuracy.

Cross-validation interpolation errors at the HCN
stations then were interpolated to a regular 0.25°
X 0.25° grid. Using gridded error fields, rather than
the station errors, facilitates mapping. Perhaps more
importantly, spatial and temporal averages of the error
fields obtained from a gridded rather than station-net-
work field reduces the deleterious impacts of spatial
sampling biases associated with irregularly spaced sta-
tion networks.

Both temporal and spatial integrations of the error
fields are examined to help determine the accuracies
of the interpolation algorithms. Computation and in-
terpretation of error statistics are discussed by Willmott
(1984) and Willmott et al. (1985b). Two sets of simple
interpolations are made and assessed to establish
benchmarks to which our other (smart) interpolation
results can be compared.

a. Spatial interpolation using long-term average air
temperature

A particularly basic approach is to interpolate each
annual-average temperature observed at the HCN sta-
tions from the long-term average-annual temperature
field presented by Legates and Willmott and enhanced
by our DEM-assisted interpolation procedure (Fig. 3).
At least one and possibly two shortcomings, however,
are associated with this approach. Legates and Will-
mott’s climatological mean temperatures are tempo-
rally invariant and, in turn, cannot resolve the year-
to-year spatial variability in the annually averaged
temperature fields. The other, albeit relatively minor
source of error, arises from using estimated station ele-
vations. Once again, we use 30”-average DEM eleva-
tions to represent station elevations, whereas Legates
and Willmott (1990) had to encode a mixture of re-
corded and estimated (e.g., from atlases) station ele-
vations. While local differences (outliers) between the
DEM and Legates and Willmott station elevations can
be quite large (Fig. 4a), the median and mean absolute
differences are small, approximately 13 and 40 m, re-
spectively. Such small elevational discrepancies suggest
that interpolation accuracy is degraded only slightly.
Nonetheless, it is worth noting that the larger local er-
rors may be caused primarily by elevations contained
in the Legates and Willmott (1990) climatology.

When the associated interpolation errors are tem-
porally and spatially integrated across the contiguous
United States, the mean absolute interpolation error
(MAE)is 0.73°C, while the corresponding root-mean-
square error (rmse) is 1.00°C (Table 1). Spatially av-
eraged MAEs (Fig. 5a) can be temporally variable, as
well as quite high (e.g., >1.0°C). Temporally averaged
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errors (MAESs) at the grid nodes also tend to be high
(>0.6°C) over most of the country (Fig. 6a). None-
theless, climatology alone explains a significant portion
of the space-time variance in temperature (Willmott
and Robeson 1995).

b. Traditional interpolation

Traditional interpolation is another relatively
straightforward approach, and the one most commonly
used in the atmospheric and environmental sciences.
While it [Egs. (1) and (2)] performs relatively well
(Figs. 5b and 6b), it commonly fails in the western
mountain regions, as well as along the Appalachian
range (Fig. 6b). Interpolation errors in mountainous
terrain frequently exceed 0.8°C in magnitude, and their
signs (not shown ) are mixed. Traditional interpolation
methods fail in mountainous regions when station net-
works are insufficiently dense to resolve topographically
induced differences in the elevations and exposures of
nearby stations.

Temporally and spatially integrated MAEs asso-
ciated with traditional interpolations are generally
lower than those associated with climatology alone,
because the time-varying annual-average HCN station
temperatures capture much of the interannual vari-
ability. Space-time MAE is 0.58°C, while the corre-
sponding rmse is 0.98°C (Table 1). It also is worth
noting that the average errors associated with tradi-
tional interpolations from the HCN network are among
the lowest in the world, as the HCN is among the spa-
tially highest-resolution station networks available
(Willmott et al. 1994; Willmott and Robeson 1995).

¢. Topographically informed interpolation

Topographically (DEM) informed interpolation
[Egs. (3)-(5)] from the HCN stations considerably
reduces interpolation errors (Table 1 and Fig. 5c).
Spatially and temporally averaged MAE is 0.44°C,
which represents a 40% improvement over climatology
alone, and nearly a 25% improvement over traditional
interpolation. Corresponding rmse’s also dropped from
1.00° and 0.98° to 0.71°C, or about 29% and 28%,
respectively (Table 1).

The DEM representation of topographic variability
is clearly explaining a considerable portion of the be-
tween-station yearly temperature differences, arising
primarily from elevational differences. Improvements
in MAE and rmse also reflect substantial decreases in
the number and magnitude of outliers (large errors).
Error reductions in mountainous areas relative to tra-
ditional interpolation, especially in the Appalachians,
are clearly visible (Figs. 6b,c). Median and mean ab-
solute differences between DEM- and HCN-station
elevations (about 9 and 21 m, respectively) also are
quite small; there are few outliers as well (Fig. 4b).
This correspondence indicates that the DEM well rep-
resents the actual (HCN) station elevations.



DECEMBER 1995

d. Topographically and climatologically informed
interpolation

Our combined DEM-assisted and climatologically
aided interpolation [Eqs. (6)-(11)] uses the DEM-
improved Legates and Willmott (1990) archive as the
higher-resolution climatological field. This method ex-
hibits the best overall performance (Table 1, Figs. 5
and 6d). Overall error (MAE) is 0.38°C, while the
corresponding rmse is 0.64°C (Table 1). Relative to
traditional interpolation, MAE and rmse are reduced
by nearly 35%. Error reductions are dramatic, especially
in mountainous areas (Fig. 6d). Improvements are
marked over much of the country because CAl is ex-
plaining a significant portion of the annual-average air
temperature variance left unaccounted for by DEM-
improved climatology. It additionally is worth noting
that, in most other parts of the world where time series
networks (such as the HCN) are sparse, improvements
over traditional methods would be even more impres-
sive.

One reason why topographically and climatologically
informed interpolation works well is that much of the
spatial variability in short-term lapse rates is filtered
out when longer-term time averages are made. Our use
of a constant lapse rate (I'), therefore, appears to in-
troduce relatively little error; that is, when interpola-
tions are made on annually or longer-term averaged
temperature fields. Potential errors associated with
lapse-rate spatial variability are reduced further when
the station networks (the HCN and Legates and Will-
mott’s network, in this instance) are sufficiently dense
to resolve the spatial lapse-rate variability. If the station
networks resolve the spatial lapse-rate variability, in
other words, it will be accounted for by the interpolator.
Application of our techniques to short-term averaged
temperature fields, however, may not work as well ow-
ing to the increased spatial variability of short-term
lapse rates.

It is difficult to precisely identify the relative impor-
tance of the topographical (DEM ) and climatological
(Legates and Willmott) contributions because they are
correlated and comparisons are dataset dependent.
Nonetheless, while CAI by itself [Eqgs. (6)~(9)] per-
forms well (Willmott and Robeson 1995), DEM-as-
sisted interpolation (again by itself) generally performs
better, at least for annually or longer-term averaged air
temperature observed on networks like the HCN. Nei-
ther alone, however, performs as well as the two used
together.

An intriguing aside is that our estimates of nation-
wide yearly average temperatures suggest a slight de-
cline over the last seven decades (Fig. 2). While this
may be real, it also may be due to improved station
networks (Figs. 2, 5, and 6), notably in cooler envi-
ronments. Changes in observation time (Schaal and
Dale 1977) and station relocations from built environs,
for instance, also may contribute to a cooling “bias”
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in recent decades. Although our “smart” interpolators
probably reduce some of the adverse station-location
effects, absence of a warming signal in this curve may
be spurious.

5. Summary and conclusions

Four interpolation procedures have been described
and evaluated using annual-average air temperature
from the United States and a cross-validation meth-
odology. Two of the interpolation approaches were
“smart” in that they incorporated spatially high-reso-
lution digital elevation information, an average envi-
ronmental lapse rate, and/or another higher-resolution
longer-term-average temperature field. Two simpler
approaches served as benchmarks to which the smart
interpolators could be compared—to help gauge im-
provements realized by smart methods. Climatology
alone was used as one of the benchmark procedures,
while traditional interpolation (from a single realization
of annual-average air temperature on a single station
network ) was the other.

Both smart approaches exhibited significant reduc-
tions in interpolation error, relative to interpolation
from climatoiogy alone or by traditional means. Of the
two, however, the one that combined DEM informa-
tion and a higher-resolution climatologically averaged
air temperature field performed the best. It posted an
overall average interpolation error of only 0.38°C per
year for the entire United States, which makes it nearly
35% more accurate than traditional interpolation. In-
asmuch as the spatial resolutions of most station time
series archives are lower than the resolution of the HCN
archive, it is likely that the relative (to traditional in-
terpolation) performance of smart interpolation in
other applications will be even better than reported
here. It is clear that the incorporation of higher-reso-
lution spatially correlated information can reduce time-
averaged air temperature interpolation errors signifi-
cantly.
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