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1. INTRODUCTION

Concern is routinely expressed about nonclimatic
signals in temperature records. Past studies have typi-
cally focused on false warming trends induced by dif-
ferential characteristics of urban vs. rural landscapes
(e.g. Jones et al. 1990, Hansen et al. 2001), inhomo-
geneities due to discontinuous station maintenance or
record-keeping (e.g. Jones & Moberg 2003) and large-
scale land-use changes (Pielke et al. 2002, Kalnay &
Cai 2003). Significant urban heat island biases in
temperature records have been found in South Africa
(Balling & Hughes 1996), Vienna, Austria (Böhm 1998),
China (Jones et al. 1990), Alaska (Magee et al. 1999),
Japan (Fujibe 1995), India (Hingane 1996) and others. 

Population is typically used as a proxy for extraneous
bias, and a common quantification device is to com-
pare rural to urban stations (e.g. Jones et al. 1990,
Gallo et al. 1999). This test only suffices if population is
a sufficient proxy for nonclimatic temperature trends,
but even small villages can experience land-use
changes that cause heat island effects (e.g. Torok et al.

2001). Also, an urban-rural comparison is only possible
in places where temperature is densely enough sam-
pled that adjacent urban-rural pairs are available,
which is not the case everywhere. 

Some researchers claim that while nonclimatic
factors are present in the raw data, they have been
adequately identified and removed. The recent Inter-
governmental Panel on Climate Change (IPCC)
Working Group I Summary for Policy Makers, refer-
ring to a graph of globally averaged temperature
data, says only: ’These numbers take into account var-
ious adjustments, including urban heat island effects.’
(IPCC 2001, p. 1). Beyond that, the possibility of sig-
nificant nonclimatic effects are not mentioned in the
Summary. Within the report itself the discussion of
urban heat island effects is brief and leaves the
impression that non-climatic signals have been suc-
cessfully factored out of the raw weather station data.
Others have argued that specific nonclimatic effects,
such as urban heat islands, only add trivial amounts to
what are principally climate trends in published, grid-
ded series (Jones et al. 1990). Hence, the perceived
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validity of temperature data rests on the claim, not
that there are no ‘fingerprints’ of socioeconomic pat-
terns in them, but that they are too small to matter or
that they have been identified and removed during
the gridding process. 

We test this assertion in this paper. We first examine
a sample of 218 monthly mean temperature records
from the Goddard Institute of Space Studies (GISS)
collection, over the 1979 to 2001 interval, and compute
the trend at each site. We chose this interval because it
is concurrent with the record of tropospheric tempera-
tures estimated by the Microwave Sounding Units
(MSUs) on satellite platforms, a record which shows
considerably less warming, on a globally averaged
basis, than ground-based temperatures (Christy et al.
2003). We show that after controlling for fixed regional
variations in climate, including a specific indicator of
greenhouse warming, the spatial pattern of trends is
significantly correlated with a vector of economic
activity and social conditions which are chosen as
proxies for a range of potential nonclimatic influences
on published temperature data. We then compute
trends for the same interval in the gridded land-based
data used by the IPCC in grid cells containing the 218
GISS station locations. We show that the same socioe-
conomic fingerprint remains even after all homogene-
ity adjustments. These extraneous effects add up to a
significant net warming bias at the global level.

The nonclimatic effects are measured while simulta-
neously controlling for a ‘greenhouse’ warming factor.
Based on theoretical aspects of greenhouse warming
quantified by Staley & Jurica (1970), Michaels et al.
(2000) found that the rate of increase in average tem-
perature is directly proportional to the amount of dry
air (on a climatological basis) within each IPCC grid
cell. In winter, when the mean grid cell dewpoint was

below 0°C, the rate of warming was directly propor-
tional to the average grid cell surface barometric pres-
sure. When the dewpoint was above 0°C, the rate of
recent warming was statistically insignificant. This
result is consistent with physical explanations of
warming due to infrared absorption and its rather
striking presentation (Fig. 1) allows its inclusion in this
study as a specific (though not exhaustive) indicator of
greenhouse warming. Our results will show that
indeed the amount of dry air predicts the dominant
fraction of warming in the cold season, but outside the
dry/cold regions the measured temperature change is
primarily explained by economic and social variables. 

Proposing a causal relationship between national
socio-economic conditions (such as income and liter-
acy) and the quality of local meteorological data
requires justification. A possible mechanism by which
economic activity, and attendant land-use changes,
affects measures of sensible heat is an induced
change in the local Bowen ratio (e.g. Friedrich et al.
2000, Pielke et al. 2003). Other mechanisms might
include changes to local atmospheric chemistry from
air pollution. Data quality can also be affected by eco-
nomic conditions. Climate stations are costly to con-
struct, maintain and operate. In the US, this has at
times required a full time national staff of over 450
trained personnel (Linacre 1992, p. 31). Meteorologi-
cal equipment must be kept in good working order,
with recommended inspections once a week or imme-
diately after a severe weather disturbance, as well as
full maintenance and calibration twice a year, with
immediate repair or replacement of defective in-
struments (Environment Canada, Guidelines for Co-
operative Climatological Autostations Version 2.0). In
much of the world, the resources needed to attain
these standards would be considered a ‘luxury.’ Since

public resources are required, the quality of
station data is not independent of general eco-
nomic conditions. 

Measures to protect data quality can be
resource-intensive. For instance, redundant
weather stations can be set up in remote and rural
locations to increase the spatial sample and con-
trol for urban heat bias, but then staffing costs rise
since stations are still required at urban airports.
The burden of maintaining the network of
weather stations has evidently proven onerous:
two-thirds of the world’s stations have been
closed since the 1970s, taking the number of
active sites in the Global Historical Climatology
Network from about 6000 down to 2000 over the
past two and a half decades (Peterson & Vose
1997). 

In countries with relatively low educational
attainment, skilled labour is scarce and hence its
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Fig. 1. Relationship between average grid cell pressure and grid cell
temperature change for the Northern Hemisphere winter half-year.
Dry grid cells: grid cells with a seasonal average dewpoint tem-

perature less than 0°C. From Michaels et al. (2000)
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real cost is higher than in countries with advanced
educational systems. This constrains the ability of a
national meteorological service to hire and retain tech-
nical staff for data collection and managing meteoro-
logical equipment. While there is no a priori reason to
assume this will bias temperature trends up (or down),
it could lead to a warming bias if non-urban stations
become under-used, if Stevenson Screens are allowed
to discolor, or if cold weather events interfere with data
collection more often than warm events. An observed
spatial pattern of published surface trends and the spa-
tial pattern of educational attainment does not imply
anything about the competence of individuals who
look after the meteorological instruments, instead the
concern is that economic conditions impose a con-
straint on the overall quality control process.

The next section introduces the data set and the
empirical model. Section 3 presents results. Section 4
discusses model specification tests and Section 5 tests
out-of-sample prediction ability. Section 6 uses the
estimation results to remove nonclimatic trends from
the data. Section 7 presents a summary and conclu-
sions.

2. DATA AND EMPIRICAL MODEL

The variables used in the study are described in
Table 1 and summary statistics are in Table 2. The
empirical model is a regression of the surface-
measured temperature trend on 3 groups of variables.
The first group (PRESSi, WATERi, COSABLATi) re-
presents the climatic factors (including those related to
potential greenhouse mechanisms) that logically
explain variations in the temperature trend, including
the regional mean air pressure in the dry regions,
coastal proximity, and the cosine of absolute latitude.
The second group (POPi to GDPGROWi) represents
economic factors and consists of population, scale of
local economic activity, coal use and economic growth
rates. The third group (SOVIETi to LIT79i) represents
data management factors including the local literacy
rate and the number of months of missing data in the
local temperature record. No a priori assumptions are
made as to whether extraneous influences would lead
to a net warming or cooling effect; instead the data are
allowed to determine the signs and sizes of all coeffi-
cients. Note that some variables can simultaneously
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Variable name Code Description
(referring to location i)

Station trend STRENDi Slope coefficient from OLS regression of GISS monthly average temperature 
level on time trend spanning 1979:1 = 1 to 2000:12 = 264

Grid cell trend GTRENDi Slope coefficient from OLS regression of 5 × 5 grid cell mean temperature level 
at location i on time trend spanning 1979:1 = 1 to 2000:12 = 264

Tropospheric trend MTRENDi Slope coefficient from OLS regression of GHCC monthly average temperature 
level on time trend spanning 1979:1 = 1 to 2000:12 = 264

Air pressure PRESSi Local mean surface air pressure in bars

Proximity to water WATERi Location is adjacent to ocean or major body of water

Absolute latitude COSABLATi Cosine of absolute value of latitude in degrees

Population POPi Population of city, town or rural area where thermometer is located

Scale SCALE 79i Scale of local economic activity in 1979 (per capita income times local 
population POPi)

Coal use in 1980 COAL 80i National coal use in 1980 in million short tons

Growth in coal COALGROWi Average (compound) annual percent growth in national coal use from 1980 to 
consumption 1998. 

Initial per capita income INC 79i 1979 real GDP per capita using 1985 international prices, in US$1000 per 
annum

GDP growth rate GDPGROWi Average (compound) annual growth rate in national real GDP (local currency) 
between 1979 and 2000

Soviet membership SOVIETi A dummy variable that takes the value of 1 if the station was located in a 
member of the former Soviet Union and 0 otherwise

Number of missing values SURFMISSi The number of months between 1979:1 and 2000:12 in which temperature data 
were missing from the temperature record

Literacy LIT 79i Average national literacy rate, males and females, in 1979 or the earliest 
available year thereafter

Table 1. Variable names and descriptions. OLS: ordinary least squares; GISS: Goddard Institute of Space Studies; GHCC: Global 
Hydrology and Climate Center; GDP: gross domestic product
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measure both economic and climatic effects: coal con-
sumption for instance is correlated with air emissions
but is also a descriptor of a nation’s economic situation. 

Note that the dependent variable at each location i is
not a temperature level but a trend over the interval 1979
to 2000. The regression model developed here does not
require information on the variance of the trend, so prob-
lems related to inference in the present of serial correla-
tion or stochastic trends are not of concern. Station-
specific surface temperature trends over the period 1979
to 2000 are computed using monthly data from 218 sites
in 93 countries (Table 3 & Fig. 2). These data were

obtained from GISS (2002) using the series combined at
a single location, after homogeneity adjustment. The
sample represents about 10% of active climate stations
in the GISS collection. Further adjustments to data from
the US and southern Canada were made by GISS after
this sample was collected. The adjustments are ex-
plained in Hansen et al. (2001) and are generally small.
The data in this study are the ones on which the asser-
tions in the IPCC (2001) report were based.

Stations were sampled from all 7 continents, with the
intent to draw from as many different countries as pos-
sible. Additional coverage of Canada, the US and Rus-
sia was done to improve the spatial spread. Stations
were selected for this sample only if they were in con-
tinuous operation from 1979 through 2000, and the
data were available in the GISS on-line collection. The
selection of GISS stations was made prior to the compi-
lation of the socioeconomic covariates, and no addi-
tions or deletions to the list were made once the data
analysis was underway. A follow-up study will extend
the analysis herein to the entire land-based IPCC grid
cell collection.

The monthly GISS Station temperatures at each
location i are denoted Si(t). For each location i =
1,…,218, a separate ordinary least squares (OLS)
regression of Si(t) on the time trend t was run:

(1)

Here ai is a constant term (1 for each station) and t runs
from 1 to 264, covering the interval from 1979:1 to
2000:12. The least-squares slope coefficients from Eq.
(1) fill the vector STRENDi. We chose this interval
because it is the period of apparently rapid warming
that has generated concern about anthropogenic cli-

S t STREND ti i i it( ) = + × +a e
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Name Mean SD Min. Max.

STRENDi 0.32 0.46 –1.55 1.43
GTRENDi 0.27 0.24 –0.47 0.91
MTRENDi 0.18 0.22 –0.21 0.76
PRESSi 1014.9 4.99 987 1029
WATERi 0.47 0.50 0 1
LATi 25.2 32.3 –75.5 80.0
POPi

a 5.9 15.06 0 116.7
SCALE 79i

b 5.28 15.53 0 113.9
COAL 80i 0.131 0.232 0.0 0.701
COALGROWi 1.0 5.41 –16.8 18.77
INC 79i 6.44 4.98 0.32 26.71
GDPGROWi 0.52 1.71 –8.77 5.37
SOVIETi 0.20 0.40 0 1
SURFMISSi 23.5 28.24 0 138
LIT 79i 79.8 26.98 8.0 99.0
aPopulation is in 100 000’s 
bScale is in billions $US 

Table 2. Summary statistics. Number of observations = 218
except for GTRENDi where number is 205. Lati: latitude (°);

see Table 1 for other variable names and descriptions
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Fig. 2. Locations of Goddard Institute of Space Studies (GISS) station data
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mate change, and because it is concurrent with the
record of tropospheric temperatures estimated by the
MSUs on satellite platforms, a record which shows
considerably less warming, on a globally averaged
basis, than ground-based temperatures (Christy et al.

2003). These data are used for a specification test later
in the paper.

A second vector of trends were taken from the IPCC
gridded temperature departures in 5° × 5° grid cells
corresponding to the surface station trend locations.
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Toronto, Canada Mar Del Plata, Argentina Sofia, Bulgaria Sydney, Australia
Clyde, Canada Salto, Argentina Varna, Bulgaria Christchurch, New Zealand
Eureka , Canada Ezeiza, Argentina Sulina, Romania Kuantan, Indonesia
Resolute, Canada Gualeguaychu, Argentina Bucuresti, Romania Iliastai, Mongolia
Cambridge Bay, Canada Buenos Aires, Argentina Sliac, Slovakia Tokyo, Japan
Churchill, Canada Comodoro Riva, Argentina Poprad, Slovakia Pohang, Korea
San Francisco, CA, USA Punta Arenas, Argentina Odesa, Ukraine Miliana, Algeria
Honolulu, HI, USA Ushuaia, Argentina Erzincan, Turkey Djelfa, Algeria
Austin, TX, USA Las Lomitas, Argentina Isparta, Turkey El Golea, Algeria
Santa Cruz, CA, USA Puerto Casado, Paraguay Lisboa, Portugal Beni Abbes, Algeria
Phoenix, AZ, USA Mercedes, Uruguay Krasnojarsk, Russia Beni-Saf, Algeria
Fort Meyers, FL, USA San Juan, Puerto Rico Olenek, Siberia Ouarzazate, Morocco
New Orleans,LA, USA Egedesminde, Greenland Hatanga, Russia Marrakech, Morocco
Atlanta, GA, USA Akureyri, Iceland Turuhansk, Russia Tunis, Tunusia
Charlotte, NC, USA Reykjavik, Iceland Dzardzan, Russia Aswan, Egypt
Philadelphia, PA, USA Belfast, Ireland Ilirnej, Russia Mersa Matruh, Egypt
Albany, NY, USA Dublin, Ireland Salehard, Russia Port Sudan, Sudan
Portland, OR, USA Waddington, England Murmansk, Russia Damazine, Sudan
Cleveland, OH, USA Manchester, England Kanin Nos, Russia Gedaref, Sudan
Detroit, MI, USA Aberdeen, Scotland Cokurdah, Russia Abu Hamed, Sudan
Minneapolis, MN, USA Ålborg, Denmark Verhojansk, Russia El Obeid, Sudan
Grand Forks, ND, USA Angmagssalik, Greenland Mys Smidta, Russia Karima, Sudan
Sioux Falls, SD, USA Jan Mayen, Greenland Zyrjanka, Russia Dongola, Sudan
Casper, WY, USA Oslo, Norway Ust’-Oloj, Russia Khartoum, Sudan
Boise, ID, USA Karlstad, Sweden Mys Uelen, Russia Jimma, Ethiopia
Las Vegas, NV, USA Göteborg, Sweden Hoseda-Hard, Russia Tabora, Tanzania
Seattle, WA, USA Vaasa, Finland Sverdlovsk, Russia Brazzaville, Congo
Denver, CO, USA Helsinki, Finland Kustanai, Kazakhstan Chileka, Malawi
Acapulco, Mexico Tallin, Estonia Cardzou, Turkmenistan Maintirano, Madagascar
Belize/Philli, Belize Kaunas, Lithuania Krasnovodsk, Turkmenistan Harare, Zimbabwe
Puerto Limon, Honduras Szczezin, Poland Tashkent, Uzbekistan Livingstone, Botswana
Puntarenas, El Salvador Elblag, Poland Cimbaj, Uzbekistan Bloemfontein, South Africa
Montego Bay, Jamaica Minsk, Belarus Tamdy, Uzbekistan Kimberley, South Africa
Santa Marta, Colombia Hannover, Germany Kuwait City, Kuwait Port Elizabeth, South Africa
Cartagena, Colombia Kassel, Germany Al Qaysumah, Saudi Arabia Calvinia, South Africa
Neiva, Colombia De Bilt, Netherlands Kamishli, Syria Jan Smuts, South Africa
Cali, Colombia Marseille, France Aleppo, Syria Tillabery, Niger
Bogota, Columbia Bourges, France Salalah, Oman Maradi, Niger
Maracaibo, Venezuela Graz-Thalerho, Austria Jiwani, Pakistan Agadez, Niger
San Fernando, Venezuela St. Poelten, Austria Srinagar, India Zinder, Niger
Juan Santamar, Costa Rica Ostrava, Czech Republic Souda, India Niamey, Niger
San Andres, Guatemala Geneve, Switzerland Bombay, India Bohicon, Benin
Georgetown, Guyana Cagliari, Italy Ruoqiang, China Parakou, Benin
Zanderij, Suriname Pisa, Italy Hotan, China Cotonou, Benin
Chachapoyas, Peru La Coruña, Spain Yining, China Sokode, Togo
Juanjui, Peru Valencia, Spain Chiang Mai, Thailand Lome, Togo
Cajamarca, Peru Uccle, Belgium Kuala Lumpur, Malaysia Gagnoa, Cote D’Ivoire
Tarapoto, Peru Split/Marjan, Croatia Bintulu, Malaysia Bamako, Mali
Sao Luiz, Brazil Zagreb, Croatia Kota Kinabalu, Malaysia Ouagadougou, Burkina Faso
Rocha, Brazil Debrecen, Hungary Kuantan, Malaysiaw Dakar, Senegal
Manaus, Brazil Kharkiv, Hungary Zamboanga, Philippines Boutilimit, Mauritania
Copiapo, Chile Budapest, Hungary Alice Springs, Australia Novolazaresk, Antarctica
Arica, Chile Belgrade, Yugoslavia Woomera Aerod, Australia Halley, Antarctica
Antofagasta, Chile Thessaloniki, Greece Ceduna, Australia
Formosa, Argentina Kerkyra, Greece Tennant Creek, Australia

Table 3. Station sample locations
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Monthly data for the period 1979:1 to 2000:12 were
obtained from the Climate Research Unit at the Uni-
versity of East Anglia (www.cru.uea.ac.uk/cru/data/
temperature). These data form the basis for the tem-
perature histories published by the United Nations’
IPCC. Temperature observations for time t at location i
are denoted Gi(t). The trend was estimated using 218
OLS regressions of the form 

yielding the gridded data trend coefficients GTRENDi

for the 218 sample locations. 
Table 2 shows that the mean surface station trend is

about 0.32°C/decade. This is higher than the globally
averaged surface trend during this period (0.18°C/
decade) because the sample here is more heavily
weighted towards the Northern Hemisphere (the aver-
age latitude is about 25° N). The mean grid cell trend is
0.27°C/decade. Although there was at least 1 active
GISS station in each of the 218 grid cells, 13 corre-
sponding cells in the IPCC collection did not report
data and had to be excluded from the analysis. The
average trend in the 13 GISS stations corresponding to
the empty IPCC grid cells was –0.03°C/decade, indi-
cating that some of the magnitude of warming in the
IPCC calculations is due to the loss of grid cells with
below-average (and in particular negative) trends. 

For each station, locationally fixed geographical fac-
tors include mean air pressure (PRESSi), cosine of
absolute latitude (COSABLATi), and a dummy variable
(WATERi) representing proximity to an ocean coast or
a large body of water (e.g. the Great Lakes). Air pres-
sure is included to pick up a ‘greenhouse’-warming
mechanism, as noted above. Enhanced warming
trends in dry, high pressure zones have been observed,
particularly in the Siberian anticyclone (Michaels et al.
2000). The source of the pressure data is the climatol-
ogy of Jenne (1974).

The economy and development status of a country
can be measured many ways, but there are some con-
ventional variables that are typically used in cross-
country comparisons (e.g. Heston & Summers 1991).
These include population, real national Gross Domes-
tic Product (GDP), GDP growth rates, average income,
energy usage, real consumption, export volumes, infla-
tion, interest and exchange rates and the relative size
of the public sector. Of these, the first 5 are used
herein, as these are the most likely to have some rela-
tionship to measurement of the surface temperature
field. The others might indirectly have an effect, but if
so it would likely be mediated through GDP or income. 

Economic variables at each location include popula-
tion (POPi), 1979 real per capita income (INC79i), and av-
erage growth in annual real national GDP from 1979 to
2000 (GDPGROWi). In each case except population the

data refer to the country in which the weather station is
located. The population measure is the GISS record of
the city population in which the station is located, and
was set to zero for places designated ‘rural area.’ For in-
come and other measures it would have been preferable
to use data for the specific region in which the weather
station sits, but such detail is not available. 

National income can interact with temperature data
in several ways. Higher levels of income imply more
resources are available for quality control, but may
also indicate more intensive land-use changes or local
air pollution loads. 1979 income was measured as real
GDP per capita in 1985 constant (thousand) dollars at
international prices (code RGDPC), taken from the
Penn World Tables (Heston & Summers 1991). In the
case of the former Soviet Union, USSR figures were
used for Russia and the smaller republics, while for
some former members separate income figures were
available from the World Bank Global Development
Network (WBGDN)1 and the CIA World Factbook
(CIAWF)2. Yugoslavia income was used for Bosnia and
Croatia. Greenland stations were considered part of
Denmark for economic measures, and income for
Antarctica stations were based on the administering
country. 

Data from WBGDN were used to calculate the aver-
age annual growth rate in national real GDP between
1979 and 2000 in (inflation-adjusted) local currency.
For those former Sovietdominated economies in which
the country broke apart (e.g. Czechoslovakia) the
growth rate for the separate countries was estimated
by taking a common pre-breakup income level and
comparing it to 2000 income in the post-breakup
region. 

A variable called SCALE 79i was created as the
product of 1979 local per capita income and local pop-
ulation. Since it shows average real income times local
population, it provides a measure of the total scale of
measured economic activity in the station’s vicinity.
Variations in the scale measure can potentially capture
some local changes in land-use and/or air pollution
that are not reflected in population or national eco-
nomic data. 

Data on coal consumption for each country from
1980 to 1998 were obtained from the US Energy Infor-
mation Administration (USEIA)3. The variable
COAL80i shows the 1980 total national coal consump-
tion in million short tons. The variable COALGROWi

shows the average (compound) annual increase in total
coal consumption from 1980 to 1998. Coal use adds sul-

  G t GTREND ti i i it( ) = + × +µ ν
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1WBGDN Database; www.worldbank.org/research/growth/
GDNdata.htm

2CIAWF; www.odci.gov/cia/publications/factbook/index.html
3USEIA; www.eia.doe.gov/emeu/iea/
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fate particulates to local atmospheres, with a cooling
effect that has been documented over the eastern US,
Europe and China (Charlson et al. 1992). By facilitating
electrification, coal may reduce some fuel use in cities
and thereby reduce local waste heat loads, although
these are generally assumed to be very small com-
pared to the effect of urbanization on the local radia-
tion balance. It also provides a measure of the nature
and intensity of energy use in an economy. As such,
coal is both an economic variable and a climatic vari-
able and one should be cautious in interpreting its role
in the model below. 

Measures of social influences on data quality
include literacy, the number of missing observations
at each station, and whether the data originated in
the Soviet Union. LIT 79i is the 1979 average literacy
rate for the country, taken from UNESCO4 for 1979,
or the closest year thereafter if 1979 was missing. In
all OECD countries it is conventional to record the
literacy rate as 99%, so only in non-OECD countries
is there variation in this measure. As discussed above
this variable is included as a proxy for the general
availability of skilled postsecondary-educated work-
ers. 

SURFMISSi is the number of months between 1979:1
and 2000:12 in which the observation is missing at

either surface station i or the corresponding IPCC grid
cell, depending on which is the dependent variable. 

Data from the former Soviet Union was identified as
a potential source of quality problems because of the
extraordinary political and economic disruption that
occurred after 1989. The collapse of the Soviet Union
had large effects on public budgets, staffing and
resources for scientific work. It is reasonable to sup-
pose that this introduced a discontinuity in the nature
of the temperature sample from the region covered by
the former Soviet Union. For example, Fig. 3 shows the
number of months per year in which observations were
missing in at least 1 of the 110 Russian climate stations
that operated continuously over the period 1979 to
2001 and that are available in the GISS on-line collec-
tion. Note that this does not reflect the closure of sta-
tions, but the reporting of data from stations that
remained open. The change in the completeness of the
sample after 1989 is quite apparent. To capture qual-
ity-control effects unique to this region a dummy vari-
able, SOVIETi is created which takes a value of 1 if the
country belonged to the Soviet Bloc and 0 otherwise.
Note that this portion of the analysis is potentially con-
founded with specification of the greenhouse signal in
dry air via the pressure data, because large areas of
Russia are affected by the Siberian anticyclone. The
pressure data and the Soviet dummy are included in
the regression equation simultaneously in order to
avoid imposing any prior assumption on which effect is
predominant.
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Fig. 3. Number of months each year in which temperature data was missing in one of the 110 climate stations in the GISS collec-
tion that were located in the former Soviet Union and that operated continuously over the period 1979 to 2001

4UNESCO world education indicators http://unescostat.
unesco.org/en/stats/stats0.htm
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The basic regression equation is

(2)
where α is a constant and ε is a zero-mean disturbance
term. All estimations are done using the econometrics
program SHAZAM (White 1993) and use a hetero-
skedasticity-consistent covariance matrix estimator
(White 1980).

The γj’s are the coefficients that measure the climatic
effects. The βj’s measure economic effects and the θj’s
measure political and social factors that may impinge
upon quality control. Eq. (2) is also re-run with GTRENDi

as the dependent variable to test if the same factors
affect the gridded data trends. Some other variations to
Eq. (2) will be discussed in subsequent sections.

3. EMPIRICAL RESULTS

3.1. Global sample

The results for the global sample are in Table 4. The
first column shows the parameter estimates from a
regression with dependent variable STRENDi, the sta-
tion-based vector of trends, and the second column is
with dependent variable GTRENDi, the gridded and
‘corrected’ IPCC data. Throughout the tables bold
denotes significance at 95% while * denotes signifi-
cance at 90%. 

Regarding fixed climate effects, air pressure has a
positive effect on the observed trend, with the coeffi-
cient similar in the 2 samples (about +0.01°C/decade
mbar–1) but is significant only in the gridded version.
The cosine of absolute latitude has a negative and sig-
nificant impact on the gridded trends, consistent with
high-latitude amplification of warming. The negative
sign is persistent across most specifications and always
occurs where the coefficient is significant. Proximity to
water has a positive and marginally significant effect
in the station data. The measure labeled R2-Geog is the
adjusted R2 from a regression on the geographical
variables only, which explain only 0.04 to 0.06% of the
trend patterns. 

The parameters on population and local economic
scale are numerically small and insignificant, suggest-
ing that attempts to detect extraneous signals in sur-
face temperature data based simply on correlations
with local population or urban-rural comparisons are
likely to miss important factors. 

Coal use generates a significant local cooling effect:
an additional 1 billion short tons of national coal con-
sumption is associated with a –0.45°C/decade change
in the local station temperature. This effect carries
over to the gridded data where it is slightly smaller
(–0.32°C/decade) but still highly significant. Cross-
sectional variation in coal consumption tends to be
fairly stable over the 2 decades covered by this study,
but for regions where coal use did change, growth in
coal consumption appears to be a weakly significant
predictor of cooling in the station data. However, this
effect does not appear in the gridded sample. Exami-
nation of subsamples will show that the coal effect is
concentrated in high-income settings, primarily in the
warm season. As noted earlier, the meaning of these
effects is ambiguous since coal is both an economic
descriptor and a local climate variable. 

Other economic factors matter significantly and
carry over from the station data to the IPCC data.
Where the effect is significant in the station data
sample, it is smaller but still significant in the grid-
ded data. An increase of US$1000 in 1979 average
real income is associated with an increased local
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Variable Station data Gridded data
Global sample Global sample

Dependent variable STRENDi GTRENDi

CONSTANT –12.727 (1.16) –9.124 (2.13)
PRESSi 0.013 (1.18) 0.009 (2.18)
WATERi 0.103* (1.91) 0.012 (0.39)
COSABLATi –0.008 (0.20) –0.048 (2.46)
POPi 0.002 (0.60) –0.002 (1.26)
SCALE79i –0.002 (0.51) –0.000 (0.02)
COAL80 –0.450 (2.72) –0.323 (3.40)
COALGROWi –0.007* (1.68) –0.002 (0.85)
INC79i 0.046 (4.46) 0.030 (5.22)
GDPGROWi 0.091 (4.55) 0.039 (3.68)
SOVIETi 0.592 (5.46) 0.288 (4.73)
SURFMISSi –0.000 (0.09) –0.001 (0.16)
LIT79i –0.005 (2.99) –0.002 (2.81)

R2 0.25 0.29
Adj-R2 0.20 0.25
R2-Geog 0.04 0.06
P(Econ = 0) 0.00 0.00
P(Sov = 0) 0.00 0.00
P(Soc = 0) 0.01 0.02

df 205 192

Table 4. Parameter estimates for surface data ‘fingerprint’
model. t-statistic in parentheses, based on White’s (1980) het-
eroskedasticity-consistent covariance matrix estimator. Coef-
ficient estimates in bold: significant at 95%; *: significant at
90%. Dependent variable is in °C/decade. R2-Geog: adjusted
R2 from a regression of the surface trends on the geographic
variables (PRESSi through COSABLATi) only. P(Econ = 0): p-
value of an F-test on the hypothesis that the economic influ-
ence variables (POPi through GDPGROWi) are jointly zero.
P(Sov = 0): p-value of a t-test on the hypothesis that the Soviet
dummy is zero. P(Soc = 0): p-value of an F-test on the hypoth-
esis that social factors potentially affecting data quality
(SURFMISSi and LIT79i) are jointly zero. See Table 1 for other

variable names and descriptions
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warming trend of about 0.05°C/decade in the station
data and 0.03°C/decade in the gridded data. The
GDP growth rate is also significant: every 1% of
additional long-term annual real economic growth
adds, on average, 0.09°C/decade to the measured
station trend and 0.04°C/decade to the corresponding
gridded trend. The economic factors are jointly sig-
nificant (see Table 4, row P (Econ = 0)) at over 99%
for each sample. 

Social and political factors also leave a fingerprint on
the data. There is a very large fixed Soviet effect of
+0.59°C/decade in the station sample, which becomes
a smaller but still significant +0.29°C/decade in the
gridded sample. Recall that this is after controlling for
the pressure-based ‘greenhouse’ warming in the
Siberian region, income levels and growth rates, etc. A
test of the hypothesis that this coefficient is zero rejects
at over 99% significance (P (Sov = 0)) in each sample.
The meaning of this coefficient is not straightforward.
It may reflect problems due to disruptions in data qual-
ity control, or it may reflect inadequate controls within
the model for high-latitude climatic change based on
dry anticyclones, since maximum warming, Soviet
status, and maximum barometric pressure (due to the
Siberian anticyclone), are not geographically indepen-
dent. However,it clearly points to the need to under-
stand the nature of the temperature data from the
Soviet Union, because of their considerable influence
on the global averages that are used to quantify cli-
mate change. 

The results also indicate that a 10% reduction in the
local literacy rate is associated with a 0.05°C/decade
increase in the reported station warming rate, which
reduces to +0.02°C/decade effect in the gridded sam-
ple but remains significant. The data in this sample
(and by implication in any global sample) comes from
countries whose literacy rates range from 99 to 8%,
with an average just below 80%. The number of miss-
ing observations in the local record appears not to play
a role on the temperature trend over the whole sample,
though significant effects of opposing signs turn up in
some subsamples, as will be seen below. Literacy and
missing observations are jointly significant: P (Soc = 0)
measures the p-value on a test of the null hypothesis
that these coefficients are jointly zero, and has a value
of 0.02 or less. 

Overall a comparison of the 2 columns in Table 4
shows that there is a fingerprint of economic, political
and social conditions in the basic station data, and that
this fingerprint is slightly diminished but still signifi-
cant in the gridded data. The similarity of the coeffi-
cient estimates between the 2 models is obvious. A test
that all socioeconomic influences are jointly zero
rejects at well over 99% for both the station and grid-
ded data sets. 

Based on these results, we tentatively conclude that
contamination of station data by regional non-climatic
signals is significant, and carries over to IPCC gridded
data. Some of the variables in this model, such as coal
use and Soviet status, have potentially ambiguous
meaning. Various econometric tests for parameter sta-
bility and model misspecification will be applied in
Sections 4 and 5 below. In Section 6 we use the coeffi-
cients from Column 2 of Table 4 to factor out the extra-
neous influences on the vector of gridded trends, on
the assumption that the socioeconomic coefficients
represent contaminating influences. A possible rival
interpretation of the results in Table 4 is that the tem-
perature data are, in fact, measuring real climate
trends, but the spatial pattern of change over land can
coincidentally be represented either by socioeconomic
characteristics or by the physical layout of the atmos-
pheric general circulation. Either way it creates a non-
trivial problem for interpreting global warming data. If
the former interpretation is true, then climate data is
contaminated by extraneous signals that may prove
difficult to remove. If the latter interpretation is correct,
it implies that socioeconomic signals and ‘greenhouse’
signals are collinear in conventional temperature data,
so standard signal detection methods (e.g. Tett et al.
1999) cannot discriminate among rival hypotheses
about the causes of measured global warming. 

3.2. Income-based sample split

When studying socioeconomic factors, a relevant
division of the world is based on income. That eco-
nomic growth acts differently on the local environment
depending on the development context is a common
theme in the literature concerning the so-called ‘Envi-
ronmental Kuznets Curve’ (see Grossman & Krueger
1995, Ekins 1997). Extensive empirical evidence shows
that the consequences of economic growth on the local
environment are worse in low-income countries than
in higher income countries, and for some air and
water pollutants the relationships have opposite signs.
That is, growth in a low-income setting worsens local
environmental conditions, whereas in high-income
economies growth correlates with reduced pollution.
Among other things, this suggests that the nature of
industrial growth and its effects on the local atmos-
phere is not uniform between developed and under-
developed economies. 

This pattern is borne out here. Table 5 shows results
based on a sample split for wealthy countries and
poor countries, where the former are defined as those
countries with per capita income of at least US$6000.
This puts, for instance, Spain and Italy in the wealthy
category, but all the former Soviet countries in the
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low-income category. The first thing to note is that the
general pattern observed in Table 4 holds up: coal
consumption, economic growth and Soviet status
exhibit discernible influences in the relevant subsam-
ples. The effects of economic activity and coal con-
sumption are significant in the wealthy countries,
while social indicators like literacy are not. The fact
that coal use has no significant effect in the poor
region subsample indicates, among other things, that
that which is being measured is not a global effect but
a local or regional effect, consistent with the work of
Charlson et al. (1992). It is also seasonal in nature, as
will be demonstrated below. The rate of missing data
appears to exert a cooling bias in the gridded data
from wealthy regions: an additional 10 missing
months in the record is associated with a trend
decline of 0.34°C/decade. 

In poor countries, variations in energy use and
income are not significant, but overall economic
growth is. Interestingly the station data show no signif-
icant effect from population, but in the post-adjust-
ment gridded data a negative and significant effect
emerges, amounting to –0.01°C/decade (relative to the
station data) for every 100 000 persons.

The Soviet effect is extremely large (+0.69°C/
decade) and significant in the low-income station data.
It is smaller (+0.29) but still significant (t = 4.32) in the
gridded data. Again, we emphasize that the region
covered by the Soviet variable coincides with maxi-
mum barometric pressure and therefore may conflate 2

quite different effects. In poor countries the effects of
literacy and missing records are about the same mag-
nitudes between the 2 data sources, though only liter-
acy is significant. Twelve of the 13 regions with miss-
ing grid cell data are in the low-income countries.

3.3. Moisture-based and seasonal sample split

The climatology of a region exhibits sensitivity to the
mean water vapour level. As explained in Michaels et
al. (2000), we can expect infrared-absorption due to
increased CO2 levels to exert a greater local tempera-
ture influence in relatively dry airmasses; the expected
effect will be stronger the higher is local air pressure,
and strongest in the cold season. To check for the rela-
tive importance of this pattern, the IPCC gridded data
were used to compute cold season and warm season
trends, and the regression analysis was run separately
on both the global and the dry-region subsamples. The
‘warm’ season is defined as April to September in the
North Hemisphere and October to March in the South
Hemisphere; and vice-versa for the cold season. Dry
regions were identified as those with negative mean
dewpoint. 

The results are in Table 6. The dependent variable in
all cases is the IPCC gridded data. In dry regions
(Columns 2, 4), air pressure is positive and significant
in the cold season but not the warm season. In the cold,
dry subsample, apart from a marginally significant
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Variable Wealthy region Poor region
Station data Gridded data Station data Gridded data

CONSTANT –22.608 (0.91) –7.499 (1.20) –11.377* (1.73) –10.206* (1.87)
PRESSi 0.021 (0.87) 0.007 (1.14) 0.011* (1.76) 0.010* (1.91)
WATERi 0.126 (1.26) 0.014 (0.25) 0.131 (2.09) 0.043 (1.29)
COSABLATi –0.145* (1.92) –0.078 (2.22) 0.037 (0.80) –0.039* (1.68)
POPi –0.002 (0.40) 0.000 (0.13) 0.005 (1.16) –0.005 (2.39)
SCALE79i 0.001 (0.13) –0.002 (0.51) 0.011 (0.59) 0.010 (0.77)
COAL80i –0.769 (3.17) –0.713 (5.97) –0.397 (1.31) –0.037 (0.30)
COALGROWi –0.031 (2.63) –0.013 (2.90) 0.001 (0.15) 0.002 (0.73)
INC79 0.069 (2.70) 0.066 (7.26) –0.003 (0.09) 0.006 (0.40)
GDPGROWi 0.107* (1.73) 0.098 (3.86) 0.064 (3.30) 0.021* (1.78)
SOVIETi 0.694 (5.43) 0.291 (4.20)
SURFMISSi –0.005 (1.05) –0.034 (6.87) 0.001 (0.59) –0.000 (0.04)
LIT79 0.008 (1.15) 0.001 (0.19) –0.003* (1.74) –0.002 (1.99)

R2 0.30 0.50 0.34 0.30
Adj-R2 0.19 0.42 0.27 0.23
R2-Geog 0.02 –0.01 0.05 0.12
P(Econ =0) 0.00 0.00 0.00 0.03
P(Sov = 0) 0.00 0.00
P(Soc = 0) –0.29 0.00 0.20 0.14

df 68 67 125 113

Table 5. Parameter estimates for surface trend model on economic subsamples. Dependent variable is temperature trend in 
°C/decade at surface in either station data set or gridded data set. Definitions and notes as for Table 4
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effect from population, no other effect is significant in
the cold season/dry region subsample. It is noteworthy
that the Soviet coefficient goes negative (though is
insignificant): this implies caution is warranted in
interpreting the large positive Soviet coefficients in
other specifications, since they may reflect some con-
founding influence from meteorological phenomena
affecting that part of the world. Table 6, Columns 1 and
3 show that in the global sample the seasonal pressure
effect is significant or marginally significant and of
similar magnitude to that observed in the global
annual sample (about +0.01°C/decade mb–1). The
income, growth, literacy and Soviet effects are signifi-
cant in both the cold and warm seasons in the global
sample, but not in the dry-region subsamples. Coal use
is only a significant factor in the warm season trends,
indicating that what is being picked up here is a tem-
porary local effect. 

If we take the coefficient on PRESSi to represent a
‘greenhouse’ signal, the implication of Tables 4 & 6 is
that the effect is small but observable in the global
sample, but is concentrated in dry, high pressure cold
season airmasses. These largely form in Siberia and
northwestern North America (see Fig. 1a in Michaels
et al. 2000). Elsewhere the effect is not consistently
observable, and the temperature data are dominated
by non-climatic factors. The absence of a dominant
greenhouse effect in lower tropospheric temperature
anomalies was recently demonstrated in Kärner (2002)
using time-series methods. 

4. MODEL SPECIFICATION TESTS

We now subject the results from Table 4 to a series of
tests for model misspecification. The results are all
shown in Table 7. The first column is a repeat of
Table 4, Column 2 for comparison. The specification
tests all refer to the results using the gridded IPCC data.

4.1. Outliers and influential observations

A good test for parameter stability is to see whether
the results are sensitive to the removal of so-called
‘influential’ observations, which is sometimes called
‘leverage.’ These are detected as follows (see Kmenta
1986). The equation for the OLS predicted values can
be written as Hy = ŷ, where y is a vector of dependent
variable observations and ŷ is the OLS prediction. H is
called the ‘hat’ matrix and has dimension n × n where
n is the sample size, and the i th element along its dia-
gonal is denoted hii. The diagonal elements are all
between 0 and 1 and sum to K, the number of inde-
pendent variables, so the average value of hii is K/n. If
the model is re-estimated with observation j deleted,
the change in the parameter estimates is positively
related to hjj. As a general rule if hjj > 2K/n (i.e. greater
than twice the average value) then observation j is
considered influential. 

Eleven observations were identified as influential
and deleted. The parameters were re-estimated on the
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Variable Cold season Warm season
Global sample Dry regions Global sample Dry regions

CONSTANT –8.373* (1.68) –18.239* (1.96) –11.240 (2.31) 2.727 (0.32)
PRESSi 0.009* (1.73) 0.018 (2.17) 0.011 (2.36) –0.001 (0.18)
WATERi 0.031 (0.85) 0.069 (0.70) 0.001 (0.03) –0.008 (0.12)
COSABLATi –0.022 (0.86) 0.023 (0.42) –0.064 (2.93) –0.050 (1.28)
POPi –0.001 (0.35) –0.025* (1.80) –0.002 (1.44) –0.008 (0.67)
SCALE 79i –0.001 (0.40) 0.011 (1.16) –0.000 (0.03) 0.005 (0.66)
COAL 80i –0.002 (0.02) –0.090 (0.47) –0.436 (3.81) –0.564 (3.10)
COALGROWi –0.000 (0.00) –0.013 (0.82) –0.004 (1.43) 0.014 (1.27)
INC 79 0.033 (4.47) 0.045 (1.33) 0.026 (4.43) 0.018 (0.69)
GDPGROWi 0.033 (2.18) –0.012 (0.23) 0.039 (3.76) 0.045 (1.23)
SOVIETi 0.223 (3.32) –0.035 (0.11) 0.302 (4.45) 0.289 (1.25)
SURFMISSi –0.003 (0.23) –0.045 (1.25) –0.022 (2.22) 0.053 (2.01)
LIT 79 –0.003 (3.01) –0.003 (0.22) –0.003 (2.85) –0.011 (0.89)

R2 0.23 0.34 0.29 0.31
Adj-R2 0.18 0.18 0.25 0.13
R2-Geog 0.03 0.00 0.06 0.02
P(Econ = 0) 0.00 0.13 0.00 0.02
P(Sov = 0) 0.00 0.92 0.00 0.22
P(Soc = 0) 0.01 0.46 0.00 0.09*

df 193 47 196 46

Table 6. Parameter estimates for gridded trend model, cold/warm season subsamples; global and dry regions. Dependent vari-
able is seasonal temperature trend in gridded data set. Cold season: October–March in the North Hemisphere; April–September 

in the South Hemisphere; reverse for warm season. Variable definitions and notes as for Table 4
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remaining data and the results are in Column 2 of
Table 7. The fit improves slightly in the full model. Nei-
ther signs nor approximate magnitudes of any parame-
ters are affected. With respect to inferences concern-
ing the economic and social factors, all the results are
preserved, indicating that they are not spurious effects
of a few anomalous station records. 

4.2. Surface-tropospheric differences

The apparent discrepancy in global warming rates as
measured by the surface network and the satellite MSU
system has been oft-noted and subject to vigorous sci-
entific discussion (Michaels et al. 2000, National
Research Council 2000, Santer et al. 2001). Here we test
to see if the spatial pattern of surface trends may reflect
geographic variations in lower tropospheric tempera-
ture trends that are inappropriately being identified as
socioeconomic factors by the regression model. 

The vector of tropospheric trends in 2.5° grid boxes
with centers corresponding to the IPCC grid cells for
the period 1979:1 to 2000:12 were obtained from the
MSU record of the Global Hydrology and Climate
Center (GHCC5, see Christy et al. 1997, Hurrell et al.
2000). The data product version 5.1, dated March 2003,

was used for these calculations. A vector of tropos-
pheric trend coefficients MTRENDi for the 218 sample
locations was generated using the same method as for
the surface data, and the vector of surface-troposphere
trend differences STDIFFi = GTRENDi – MTRENDi was
used as the dependent variable in Eq. (2). These differ-
ences were studied in Jones et al. (1997) and are
related to those examined recently in Kalnay & Cai
(2003). The results are shown in Table 7, Column 3. 

The results are quite similar to the original results,
despite removing the spatial variation in the tropos-
pheric trend data, though there are some noteworthy
differences. Some of the economic effects are attenu-
ated, especially coal use and Soviet origin of the grid-
ded data. By contrast a strong positive effect associated
with rates of missing surface data emerges and the lit-
eracy effect is preserved. This test pertains to the rival
interpretation discussed in Section 3.1. It is less likely
that the patterns picked up in the surface trend data
can be attributed to atmospheric temperature change
bearing a spurious socioeconomic fingerprint since a
comparable fingerprint is found in the differences
between the surface and tropospheric trends mea-
sured using completely difference instrumentation. A
regression of the differences just on the geographic
variables has an adjusted R2 (Adj-R2) of only 0.02, indi-
cating that most of the explanatory power is with the
nonclimatic variables. 
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Variable Global Outliers S-T DIFF Orthogonal NA+SA
sample removed Global sample model removed

Gridded data Gridded data Gridded data Gridded data

CONSTANT –9.124 (2.13) –6.952* (1.77) –2.382 (0.76) –11.250 (2.98) –2.305 (0.53)
PRESSi 0.009 (2.18) 0.007* (1.82) 0.003 (0.84) 0.011 (3.05) 0.002 (0.58)
WATERi 0.012 (0.39) 0.020 (0.65) –0.003 (0.14) 0.023 (0.71) 0.029 (0.81)
COSABLATi –0.048 (2.46) –0.044 (2.34) –0.049 (3.03) –0.052 (2.44) –0.054 (2.44)
POPi –0.002 (1.26) –0.004 (1.09) –0.002 (1.35) –0.002 (1.24) –0.004 (1.35)
SCALE 79i –0.000 (0.02) –0.000 (0.10) 0.000 (0.14) –0.000 (0.05) 0.005 (1.42)
COAL 80i –0.323 (3.40) –0.296 (2.83) –0.134 (2.01) –0.330 (3.64) –0.011 (0.08)
COALGROWi –0.002 (0.85) –0.001 (0.41) 0.003* (1.75) –0.002 (0.78) –0.006* (1.83)
INC 79 0.030 (5.22) 0.034 (5.20) 0.008* (1.74) 0.030 (5.26) 0.017 (2.31)
GDPGROWi 0.039 (3.68) 0.034 (3.00) 0.002 (0.17) 0.039 (3.72) 0.028 (2.19)
SOVIETi 0.288 (4.73) 0.319 (5.33) 0.099* (1.91) 0.286 (4.87) 0.135* (1.87)
SURFMISSi –0.001 (0.16) –0.001 (0.12) 0.014 (2.50) –0.001 (0.10) –0.007 (1.14)
LIT 79 –0.002 (2.81) –0.003 (3.09) –0.003 (3.74) –0.003 (3.12) –0.000 (0.36)

R2 0.29 0.33 0.22 0.24 0.33
Adj-R2 0.25 0.27 0.17 0.20 0.26
R2-Geog 0.06 0.05 0.02 0.06 0.10
P(Econ = 0) 0.00 0.00 0.01 0.00 0.02
P(Sov = 0) 0.00 0.00 0.06* 0.00 0.06*
P(Soc = 0) 0.02 0.01 0.00 0.01 0.51

df 192 181 192 201/195 129

Correlation between predicted and observed 0.31 
R2 between predicted and observed 0.09

Table 7. Specification tests for surface trend model on annual gridded data. Details as for Table 4; also see Section 4. df in 
Column 4 refers to 2 separate estimation stages. S-T DIFF: difference between surface and tropospheric trends

5GHCC; http://www.ghcc.msfc.nasa.gov/temperature/
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4.3. A stepwise model

The previous section showed that a pressure-related
warming signal is observable especially on the spatial
pattern of cold-season trends. In this section we repeat
the experiment using a stepwise procedure that ‘stacks
the odds’ in favour of identifying climatic effects at the
expense of the socioeconomic effects. The procedure
involves first regressing GTRENDi on the geographic
variables only: PRESSi, WATERi and COSABLATi, then
regressing the residuals from this regression (which
we denote RSi) on the remaining variables in Eq. (2).
If there is little change in the coefficient estimates be-
tween the original simultaneous model and the step-
wise procedure, this indicates that the variables omit-
ted in the first step are orthogonal to the included
variables, and hence they contribute unique explana-
tory power to the model.

The results are in Column 4 of Table 7. The coeffi-
cients on CONSTANT through COSABLAT are from
the first stage regression, then the remaining coeffi-
cients are based on a regression of RSi on the socio-
economic variables. The R2 and Adj-R2 refer to the sec-
ond-stage model, while R2-Geog is the adjusted R2

from the first stage. Comparing with Column 1 it is
clear that the coefficients exhibit no important changes
of magnitude, nor are significance levels lost. We can
conclude that the socioeconomic effects contribute
unique explanatory power in the model.

Returning to the question of whether the socioeco-
nomic variables might be collinear with enhanced
greenhouse forcing, which would imply the results in
Table 4 are spurious, we find it rather implausible that
the socioeconomic variables could so neatly overlap
the spatial effects of the general circulation as regards
amplification or attenuation of ‘greenhouse forcing’.
However, if this were the case, it would constitute a
serious problem for signal detection studies that inter-
pret temperature data and attempt to attribute causa-
tion in climate change. But note the results from the
orthogonal model in Table 7: after removing the spatial
patterns due to latitude, pressure and coastal proxim-
ity, the exact same socioeconomic parameters are
returned. This provides counter-evidence to the possi-
bility that they are merely collinear to the spatial lay-
out of greenhouse forcing, and strongly suggests they
are actual patterns in the temperature data.

5. OUT-OF-SAMPLE PROPERTIES

A final specification test is the ability of this model to
support out-of-sample conclusions. The results are in
Column 5 of Table 6, which shows the parameters from
a re-estimation of the model using GTRENDi as the

dependent variable and with the 67 North American
and South American locations removed from the sam-
ple. The parameters from the subsample regression
were then used to predict the withheld North and
South American values. The correlation between the
predicted and (withheld) observed values is 0.31. A
regression of the observed on the predicted values has
an R2 of 0.09 and a significant regression F-statistic
(p = 0.00). 

6. GENERATING ‘CLEAN’ CLIMATE TRENDS

The parameters in Table 4 can be used to estimate
what the trends might look like if the social and eco-
nomic influences were removed from the data. To do
this requires making some judgments about what it
means to ‘remove’ the extraneous signals. A variety of
experiments will be done, which will show that the
nonclimatic influences likely add up to a net warming
bias. 

A first approach will be to define the conditional
expectation of the gridded trend E(GTRENDi) based on
the global sample parameter estimates with the effects
of economic variables set to zero and literacy set to
99% everywhere, yielding the model:

(3)

where the ˆ denotes the generalized least squares
parameter estimate from Eq. (2).

Table 8 shows the effects of implementing these
changes sequentially. Setting the economic covariates
to zero drops the sample average warming rate from
0.27°C/decade to 0.11°C/decade. Removing the social
effects by setting literacy to 99% for all countries and
setting the number of missing observations to zero
drops the sample average trend to 0.06°C/decade,
close to the long-run (100 yr) trend in numerous ana-
lyses of global mean temperature series (Galbraith &
Green 1992, Woodward Gray 1993, Zheng & Basher

E GTREND PRESS WATER

COSABLAT
i i i

i

( ) ˆ ˆ

ˆ ˆ
= + + +

+ ×
α γ γ
γ θ

1 2

3 4 99
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Adjustment Adjusted sample Adjusted
Average trend sample

(°C/decade) SD

Original sample average 0.270 0.237
Remove economic effects 0.110 0.125
Remove social effects 0.063 0.136
Remove soviet effect 0.011 0.053
Set income to sample average 0.201 0.053

Table 8. Values of sample average temperature trends in
gridded data after successively removing extraneous socio-

economic biases
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1999, Fomby & Vogelsang 2000), but substantially
below the surface trend since 1979, which is
0.18°C/decade. It is noteworthy that the remaining
warming is the same as given in a recent compilation
of the MSU-satellite data (Christy et al. 2003).

An additional removal of the Soviet effect drops the
warming trend to 0.01°C/decade, but this risks remov-
ing some cold-season warming that is properly attrib-
utable to greenhouse changes. Further disentangle-
ment of the Soviet, socioeconomic and cold-weather
greenhouse effects is certainly an area in need of fur-
ther investigation. 

Setting income (INC 79i) to zero effectively assumes
it is uniformly contaminating with a warm bias. An
alternative interpretation is that at low income levels
the lack of public resources impairs quality control in
ways additional to that represented by the educational
variable, which would imply that low income causes a
cooling bias. If there are offsetting effects that reverse
into a warming bias depending on the income level,
that might be picked up using a quadratic specification
(i.e. by adding the square of INC 79i to Eq. 2). This was
tried, but the estimated coefficient was very small and
insignificant, and none of the other results were
affected. However, in case there are resource-con-
straint effects if income falls too low, the above calcu-
lations were re-done setting each country’s per capita
income to the global sample mean (US$6440). As
shown in Table 8, this raises the globally averaged
trend to about 0.2°C/decade, about one-third below
the sample average.

7. DISCUSSION AND CONCLUSIONS

It is well-established that the basic land-based
weather station temperature data have been affected by
local factors related to economic growth and land-use
changes, but claims have been made that these effects
have been identified and removed in gridded records.
This study provides evidence that the contamination has
not been removed, and that it adds up to a net warming
bias at the globally averaged level. Consequently sur-
face temperature data, including the IPCC gridded cell
series, should not be interpreted as if they only measure
‘climate.’ They reflect the influence of many things,
including a complex blend of local economic and social
factors. Some of these exert an indirect influence on local
temperatures but have nothing to do with the global cli-
mate, while others have nothing to do with temperature
at all but instead affect data quality control. This study
provides evidence that after controlling for these, the
observed rate of temperature change is noticeably lower
in a global sample, and depending on how economic in-
fluences are removed, could be as low as that observed

in the satellite record. Hence, attempts to identify the
magnitude of a global ‘greenhouse’ climate signal on
surface data without properly removing the extraneous
biases (e.g. Tett et al. 1999) risks exaggerating the per-
ceived influence of atmospheric CO2 levels.

If the post-1979 temperature trends were lower than
is typically thought, the question arises whether a sim-
ilar analysis conducted over the 1961 to 1979 interval
would indicate larger reductions in temperature than
previously thought, and if so, how or whether such
changes could be explained based on current under-
standing of climate forcing mechanisms. It is not nec-
essarily the case that socioeconomic factors would add
up to a net warming bias as they appear to do after
1979, because the international economic situation
was not the same in the 2 decades before 1979 as those
after. For instance, the 1970s was marked by persis-
tently weak real income growth in western economies,
which gave way to rapid growth in the mid-1980s.
Also, the Soviet Union did not experience a calamity
comparable to 1990-1991. However this is certainly an
interesting direction for further research.

As with any application of statistics the results
embed particular modeling assumptions. Eq. (2) fits
the spatial pattern of surface temperature trends to the
spatial pattern of dry air pressure, some geographic
factors and socioeconomic factors. Establishing such a
fit is not proof of causality; to some extent one must
accept the premises of the equation. This includes the
idea that fitting a linear trend through monthly aver-
ages of temperature observations over the post-1979
interval provides meaningful climatic data. Since tem-
perature is an intensive thermodynamic variable, aver-
ages taken over time or space do not have a unique
physical relationship with the underlying temperature
field (Essex & McKitrick 2002), thus linear time trends
at best support a heuristic interpretation. Another
premise of Eq. (2) is that the explanatory variables can
be interpreted as they stand, rather than being treated
as proxies for some other variables with quite different
interpretations. Some of the specification tests in Table
7 addressed this potential concern. Overall, the results
of this study support the hypothesis that published
temperature data are contaminated with nonclimatic
influences that add up to a net warming bias, and that
efforts should be made to properly quantify these
effects. 
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