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ABSTRACT

Optimal space—time signal processing is used to infer the amplitude of the large-scale, near-surface temper-
ature response to the *‘11 year'’ solar cycle. The estimation procedure involves the following steps. 1) By
correlating 14 years of monthly total solar irradiance measurements made by the Nimbus-7 satellite and monthly
Wolf sunspot numbers, a monthly solar irradiance forcing function is constructed for the years 1894—-1993. 2)
Using this forcing function, a space—time wuveform of the climate response for the same 100 years is generated
from an energy balance climate model. 3) The space—time covariance statistics in the frequency band (16.67
yr)~'~(7.14 yr)~" are calculated using contro} runs from two different coupled ocean--atmosphere global cli-
mate models. 4) Using the results from the last two steps, an optimal filter is constructed and applied to observed
surface temperature data for the years 1894-1993. 5) An estimate of the ratio of the real climate response,
contained in the observed data, and the model generated climate response from step 2 is given, as well as an
estimate of its uncertainty. A number of consistency checks are presented, such as using data from different
regions of the earth to calculate this ratio and using data lagged up to =5 yr. Our findings allow us to reject the
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null hypothesis, that no response to the solar cycle is present in the data, at a confidence level of 97.4%.

1. Introduction

Global climate models are developed to simulate the
climate system on timescales from months to decades
and centuries. A major test of these models is their
ability to simulate the seasonal cycle of surface tem-
perature. Currently, beyond the timescale of 1 yr, there
are no known natural examples of periodic forcing that
could be used to test the long-term response of these
models. The eruption of Mount Pinatubo in 1991 pre-
sented a natural experiment to test how well global cli-
mate models simulate the climate response to an im-
pulse forcing. The models did fairly well at reproducing
the effects of the additional aerosol forcing on the cli-
mate system (Hansen et al. 1992). This was encour-
aging to climate modelers, although not unexpected
since the models are tuned to reproduce the seasonal
cycle and could be expected to do well on timescales
of several years. An important use of global climate
models is to attempt to predict the response the climate
will have to a doubling of the CO, concentration in the
atmosphere. However, this response is on the timescale
of decades to centuries, well beyond the timescale of
any known test of the models. If a periodic forcing of
the climate system on the decadal timescale could be
found, it could bring added confidence in the ability of
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these models to predict the near-term climatic effects
of the increase in atmospheric greenhouse gases. In this
paper, we present an estimate of the response of the
climate system to just such a forcing on the decadal
timescale.

In 1843, the German amateur astronomer Heinrich
Schwabe discovered an approximately 10-yr cycle in
the number of dark spots visible on the sun’s surface
(Schwabe 1844). Since that time, many people have
tried to correlate this cycle of sunspot numbers with
various measurements of the earth’s climate, especially
with the surface temperature. For many years it was
believed that the total radiative output of the sun de-
creased as the number of sunspots increased. This was
reasoned to occur because the sunspots are cooler than
their surroundings and hence would radiate less energy.
However, it is now known that the radiative output of
the sun actually increases with the sunspot number.
This increase in total solar irradiance is due to the pres-
ence of areas of greater radiative output, known as fac-
ulae, which accompany the sunspots. The net output
change is very small, but has been measured by sensors
on several research satellites over the past 16 years. The
amplitude (half the range) of this solar cycle of irra-
diance is approximately 0.6 W m~2 (Willson and Hud-
son 1991; Lee et al. 1995). However, the measure-
ments only span one and one-half solar cycles, so the
long-term variation of the solar irradiance is still un-
resolved.

The response of the climate system to such a small
perturbation is most likely to also be very small. Esti-
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mates of the amplitude of the climate response to the
solar cycle, as measured by the global annual mean
surface temperature, range in size from 0.01°C to
0.08°C (Schneider and Mass 1975; Eddy et al. 1982;
North et al. 1983; Hansen and Lacis 1990; Ardanuy et
al. 1992; Crowley and Kim 1993). The estimated stan-
dard deviation of the global annual mean of the surface
temperature is about 0.18°C. Thus, the solar cycle pro-
duces a very faint signal embedded in the natural vari-
ability of the climate (the noise). There have been
many attempts made over the last 50 years to find this
signal, usually by employing Fourier analysis of sur-
face temperature time series data. These attempts have
proven unsuccessful largely because of the small sig-
nal-to-noise ratio found in the data.

Signal processing techniques for detecting a signal
amidst background noise have been developed by
mathematicians and electrical engineers over the past
40 years (Selin 1965). Only recently have these tech-
niques been applied to the problem of detecting the
global warming signal due to increases in greenhouse
gases (Wigley and Raper 1990; Wigley and Barnett
1990; Barnett 1991; Barnett et al. 1991). Even more
recently, what are known as statistically optimal meth-
ods have been developed to detect such a signal (Has-
selmann 1979, 1993; Bell 1982, 1986; Hegerl et al.
1994; Hegerl and North 1995; North et al. 1995; North
and Kim 1995; Hasselmann et al. 1995). In this paper
we use what is known as a space—time optimal filter
to look for the signal of the climate response to the
solar cycle in the historical record of the earth’s surface
temperature. In this case the signal is a spatial pattern
that changes quasi-periodically over time. The filter is
built using both spatial and temporal information about
the expected signal and the background noise. The filter
is optimal in the sense that, for the given signal, the
maximum possible signal-to-noise ratio is found. A first
attempt at this problem was described in North and Kim
(1995).

2. Building the optimal filter

To construct an optimal filter, we must make the ba-
sic assumption that the data is a linear combination of
the signal and the noise. This assumption is supported
by a few model simulation studies involving the at-
mosphere alone (North et al. 1992; Marshall et al.
1994). On the other hand, the climate system is highly
nonlinear, and it could be that even infinitesimal forc-
ings could lead to responses that are not linear. While
we cannot rule out such possibilities, we find no com-
pelling reason not to ignore them at this time.

a. Filter theory

In this section, we sketch a brief derivation of the
space—time optimal filter as presented in North et al.
(1995) and North and Kim (1995). Suppose we are
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given several M component vectors of discrete time
series, each of length N, T,,,,, where m = 1, ---, M,
and n = 1, - -+, N. These might be from, for example,
M stations or regions on the earth, each with a record
of N years. Let the time series be composed of two
parts, a signal and noise:

Tis = Tos + Tk, 1)
The first of these time series is deterministic and must
be computed from theory or from a model. The second
term above represents the natural variability of the cli-
mate system and is taken to be a random field defined
over the earth with N time units. This too must be gen-
erated from a model since the observed data contains
both the natural climate variability and the hypothe-
sized signal. We must have an ensemble of records of
7% in order to compute the necessary statistics for
use later. The ensemble can be considered as a collec-
tion of segments of a Gaussian stationary time series,
but with correlations between the stations as well as
serial correlations in time. A filter is sought that pro-
vides an estimator of the signal from the observed data:

M N
Tig = 3% TorTES,

m'=1 n'=1

(2.2)

where T5 is the observed data from the M stations and
I'™m" is the smoothing filter. The mean square error for
the estimate is

€ = (T35 — THE?),

(2.3)

where (-) denotes the ensemble average. If we mini-
mize the mean square error with respect to the func-
tional form of the filter and subject to the constraint
that the estimate be unbiased ((T5=%) = T5gml), we
obtain a linear matrix equation for the unknown opti-
mal filter. The solution for the optimal filter may be
expressed as

, Tf,i,g,?al (Tsignal, e, )e(r,l',n’
o =—"-3 3 I (24)
Yook ik
with
(Tsignal’ e )2
Y =TI (2.5)
j k ik

where the e}’ are the space—time empirical orthogonal
functions (EOFs), or principal components; \;, are ei-
genvalues of the noise covariance matrix; and where
(TS ¢,) = 3, Togmelemn is the projection of the
signal onto the space—time EOFs. The index j is the
eigenvector index, withj = 1, -+, M, and the index k
is the frequency index, with k = —N/2, - -+, N/2. The
space—time EOFs are used to characterize the spatial
and temporal structure of the noise. The eigenvalues
\ix in Eq. (2.4) can be considered as optimal weights
of the space~time EOFs. The quantity in Eq. (2.5) is
the square of the theoretical signal-to-noise ratio. It is
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deemed theoretical since all the terms involved in its
calculation are derived from models. Figure 1a shows
a schematic diagram of the steps involved in the con-
struction of the optimal filter. Details will be covered
in later sections.

We can also build a nonoptimized filter (the so-
called ‘‘fingerprint’’ filter):

Tsignal

1—.;,,:",”" — 2m,n > 2 2 (Tsignal$ ej,k)ej"',l;(nl’
j k

(2.6)

nopt

where the square of the nonoptimized signal-to-noise
ratio is given by

1 )
'yﬁopt = ? 2 2 (Tslgnal, ej,k)z (27)
FER 3

and the total variance is given by

0? =% % M. (2.8)

b. The space—time EOFs

Assuming that the time series of noise is stationary,
we can, to a first approximation, factor the space—time
EOFs into a product of temporal and spatial parts (Kim
and North 1993). We write the time factor as a com-
plex exponential. The space~time EOFs are then writ-
ten as

e — g SP(2A)
jk T YWk r s
N

where f; = k/N is the frequency and ¢, = n is the
time. The spatial factors uj} are the eigenvectors of
the noise covariance matrix. In all our calculations
we will restrict the frequencies to the band from 0.06
to 0.14 yr~'. The reason this is done will be ex-
plained in a later section. This frequency band, which
inciudes periods from 16.67 yr to 7.14 yr, is hereafter
referred to as the solar-cycle frequency band. In prin-
ciple the eigenvalues and spatial eigenvectors should
also depend on frequency, but we have assumed that
over the solar cycle band they do not, so we drop the
k index on the \;; and u},. We will describe how the
noise covariance matrix is computed in a later sec-
tion. In this notation the phase information is handled
by the real and imaginary parts of the complex ex-
ponential.

The EOFs are orthonormal and complete, so that we
can expand functions into series of them:

, o exp(i2nfit,)
Tfrlzg:al = T;lgnalum .
K ; % Jk J \/N

Similarly, realizations of the noise can be expanded
into such representations. The covariance of the noise
coefficients have the special property

cov (T35, T05%) = N8, ;604

(2.9)

(2.10)

(2.11)
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a. Construction of the Optimal Fifter
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FiG. 1. Schematic diagrams showing (a) the construction of an
optimal filter and (b) the calculation of the scaling factor.

based upon EOF theory (e.g., North 1984). The \; are
the natural variances associated with each space—time
EOF mode. We have assumed the dependence of the
\; on frequency is negligible. The distribution of power
in the \; is the generalization of the frequency spectrum
in pure time series analysis.

¢. The scaling factor

If we substitute Eq. (2.4) into Eq. (2.2) we can write
the estimated signal as

Tf,if;:al Z 2 (Tsignal’ ej’k)(Tdata, ej,k)
72 ik )‘j

where (T*®, e;;) = =, T9%.e/" is the projection

of the data onto the space—time EOFs. We then define

the scaling factor as

1
a=—533"
Y ok

A
T51 gnal __
m,n -

. (2.12)

Tsignalej‘k ) ( Tdala , ej,k)
N .

j

(2.13)

The space—time waveform of the estimated signal can
then be expressed as

(2.14)

Fsignal __ signal
T = aT

Thus, the scaling factor « is a random variable that
represents the ratio of the estimated signal in the ob-
served data to the model-generated signal. A value of

v



15 SEPTEMBER 1996

90°

STEVENS AND NORTH

2597

60°

30°

Fi1G. 2. Geographical locations of the 36 detection boxes.

unity would imply that the signal in the data has exactly
the same amplitude as the model-generated space—time
waveform. In Fig. 1b a schematic diagram shows the
computation of the scaling factor.

As can be seen from Fig. 1a and Eq. (2.4), construc-
tion of the optimal filter requires both the model-gen-
erated space—time climate variability and the model—
generated space—time signal. In addition, from Eq.
(2.13) and Fig. 1b we see that computation of the scal-
ing factor requires the observed space—time surface
temperature data. In the next three sections we give
details about each of these.

3. The observed data

For the historical record of surface temperature, we
used the combined land and ocean dataset compiled by
Jones and Briffa (1992) and Parker et al. (1994). This
dataset, which was obtained from the National Center for
Atmospheric Research (NCAR), contains monthly sur-
face temperature anomalies from 1854 to 1993 on a 5°
X 5° latitude/longitude grid. To reduce the noise in the
data, we averaged four adjacent 5° X 5° boxes to create
a 10° X 10° detection box. Since we are searching for a
signal that has a period of approximately 11 yr, we require
that each of the 5° X 5° boxes used contain 100 years of
monthly data. To ensure adequate spatial sampling the
boxes should be well distributed over the earth’s surface,
while at the same time the spatial correlation of climate
variability between the boxes should be minimized.
Within these constraints of data availability and desired
spatial distribution, we selected 36 detection boxes. Fig-
ure 2 shows their locations.

In order to maximize the signal-to-noise ratio, it is
necessary to decide which months to use from the ob-
served data. Figure 3 shows the monthly area-weighted
variances for the detection boxes in the Northern Hemi-
sphere extratropics and Tropics (30°N to 30°S). It is
clear that using all 12 months of the year will result in
very small variances in the Tropics. It is also clear that
the winter months in the extratropics have much larger
variances than the summer months. Accordingly, we
adopt the rule that only the 6 months with the smallest
variances will be used in the extratropics, and all 12

O NH Extratropics
B Tropics (36" N to 30° S)

|

Variance ("C?)
~E-N-N-N-N-N-N-N-N-
D= R WENDHDIDOD

Lt ot o1

JFMAMJJASOND

FIG. 3. Area-weighted monthly mean variances (°C?) of the ob-
served surface temperature anomalies for the 13 detection boxes in
the Northern Hemisphere extratropics and the 20 boxes in the Trop-
ics. Monthly means for the period 1894-1993.
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months in the Tropics. Using this rule, a 100-yr time
series of the observed data was constructed for each of
the 36 detection boxes. Having adopted this rule for the
observed data, it was also applied to the construction
of the model signal and model noise time series for
each of the 36 detection boxes.

4. The model noise

Since the signal we are seeking is presumably em-
bedded in the observational data, we cannot use the
data to compute the natural variability of the climate.
The only alternative is to use long control runs from
coupled ocean—atmosphere climate models. We as-
sume these models adequately represent the space—
time structure of the natural variability, including the
spatial correlations of the surface temperature (Kim et
al. 1996b).

The control runs that we use in this study are from
the Geophysical Fluid Dynamics Laboratory (GFDL)
in Princeton, New Jersey (Stouffer et al. 1994), and
from the Max-Planck-Institut fiir Meteorologie (MPI)
in Hamburg, Germany (Cubasch et al. 1992; von
Storch 1994). The GFDL dataset was obtained from
the National Climate Data Center (NCDC). Both the
GFDL and MPI models are three-dimensional global
climate models with multilayer dynamical atmosphere
and ocean components and with surface and sea bottom
topography and include a sea ice model. The MPI
model, known as ECHAM/LSG, does not generate
any El Nifio—Southern Oscillation effect (Hegerl et
al. 1994), while the GFDL model produces a weak
ENSO effect. Both datasets contain 1000 years of
monthly mean data, which were interpolated onto 5°
X 5°latitude/longitude grids. For each month the time
series at each grid point was converted into a time
series of surface temperature anomalies, as in the
Jones dataset.

The following procedure was used to calculate the
covariance matrix of the model noise. For each of the
36 boxes the monthly time series within that box was
averaged using the rule described in the last section.
The resulting thirty-six 1000-yr time series were then
split into shorter time series of 100-yr length (same
length as the observed data). Thus, the GFDL and MPI
datasets each yielded ten 100-yr time series for each of
the 36 boxes. Each set of 36 of these 100-yr time series
is considered one realization, so we have ten realiza-
tions from each dataset. We assume that these time se-
ries are stationary. For each of these realizations the
covariance between the 36 boxes was calculatéd at each
of the nine frequencies in the solar-cycle band. Assum-
ing that the variance has no frequency dependence, the
covariances were averaged over the frequencies in the
band. Finally, the ensemble mean of the covariances
was calculated by averaging over the realizations. The
end result of this procedure is a 36 X 36 real symmetric
covariance matrix of the model noise. The eigenvectors
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and eigenvalues of this matrix were calculated by di-
agonalizing the matrix. Each of the 36 eigenvectors has
36 components and a corresponding eigenvalue. These
36 spatial eigenvectors are used in the construction of
the space—time EOFs, as in Eq. (2.9). Following this
procedure, a complete set of space—time EOFs and ei-
genvalues was produced from both the GFDL and MPI
datasets.

5. The model signal
a. The solar-cycle forcing function

Measurements taken by several satellites over the
past 16 years indicate that the total solar irradiance is
correlated with the sunspot number. Figure 4 shows the
monthly Wolf sunspot number and the monthly Nim-
bus-7 total solar irradiance for the years 1979-92. Both
datasets were obtained from NCDC. By lagging the
Nimbus-7 data by one month, the correlation is found
to be 0.725. The record of monthly mean sunspot num-
ber since 1749 is available, and hence a plausible rec-
ord of the monthly total solar irradiance can be con-
structed by using the calibration from the satellite mea-
surements. Several other methods of calculating such a
forcing function have been developed by other re-
searchers (Foukal and Lean 1990; Hoyt and Schatten
1993). Figure 5 shows, for the period 1894-1993, the
solar irradiance forcing function we constructed in just
such a manner. The quasi-periodic 11-year solar cycle
is apparent, as well as an increase in the mean irradi-
ance over the last century. By restricting our calcula-
tions to the solar-cycle band we exclude any contri-
bution from the low frequencies associated with the
long-term trend of the mean. Notice that the maximum
amplitude is approximately 1 W m~2, while the mean
amplitude over the 100 years is closer to approximately
0.5 Wm™2,

300 1374
w 275 7 Nimbus-7 &
é 2:2 4 W 1373 ;
] - 1372
3 200 - <
s 1751 - 1371 Q
2 150 - 8
2 125 - 1370 ©
@ 100 - 38 g
= 75- - 1369 =
2 5 1 3
71 Cycle 21 Cycle 22
o ly T Ll Ll 1 1 I T 1 i yl 1 1 1 1367
798081828384 858687 888990919293

Year

FiG. 4. Monthly mean Wolf sunspot number (SSN) and total solar
irradiance from Nimbus-7 for the period January 1979—December
1992.
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Fi1G6. 5. Monthly solar-cycle irradiance forcing
function for the period 1894-1993.

Figure 6 shows the periodogram of the annual means
of the monthly time series in Fig. 5. This type of plot
shows the power for each frequency in the solar-cycle
band decomposed into the squares of the real and imag-
inary parts of the discrete Fourier transform of the forc-
ing function s(n):

N 2
Power(f,) = 1 [ Y s(n) cos(%)]

N
+ % [ S s(n) sin<—27;(;t")] .

n=1

n=1

In Fig. 6, (real part)? refers to the first term and
(imaginary part)? refers to the second term in the above
equation. Note that almost all the power appears in the
square of the real part at the two frequencies 0.09 yr™!
(period of 11.11 yr) and 0.10 yr~' (period of 10 yr).
Decomposing the periodogram in this way allows us to
see how the power is distributed between the two parts
at each frequency.

This forcing function can be used to generate the
space—~time waveform of the response from a suitable
climate model. If a coupled ocean—atmosphere climate
model were used to construct such a signal, many long
realizations would have to be generated to compute the
ensemble mean. This would entail much time and ex-
pense. It is for this reason that we have developed an
energy balance model to generate our signal waveform.

b. The energy balance model (EBM )

The EBM we employ is a time-stepping, two-di-
mensional model with realistic geography and a slab
ocean mixed layer. While there is no thermodynamic
sea ice model, the perennial sea ice is assigned an ap-
propriate heat capacity. The resolution of the model
(2.8125° X 2.8125°) is similar to an atmospheric GCM
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with T42 truncation. The model does a good job of
simulating the annual cycle, in both amplitude and
phase. The EBM solves the elliptic partial differential
equation, known as the energy balance equation, at
each time step on a regular latitude/longitude grid on
a sphere. The full multigrid method with W-cycling and
red/black line relaxation in both directions is used to
find the solution (Briggs 1987; Press et al. 1992).
There are 65 X 128 grid points on the sphere, including
the poles, and 48 time steps per year. The diffusion
coefficient is proportional to the gradient of the surface
temperature (Stone 1973) and is recalculated at each
time step. Previous researchers had developed an EBM,
with a constant diffusion coefficient, using the multi-
grid method on an irregular grid, but with only V -cy-
cling and point relaxation (Bowman and Huang 1991;
Huang and Bowman 1992). The monthly two-dimen-
sional albedo field is derived from five years of monthly
albedo data from the Earth Radiation Budget Experi-
ment, obtained from the National Aeronautics and
Space Administration (NASA). There is no ice-albedo
feedback in the model. The radiation damping coeffi-
cient over the mixed layer is 2.2 W m™2. The mixed
layer depth varies from 60 m at the equator to about
86 m at the Arctic and Antarctic Circles. Together these
parameters yield a thermal relaxation time that varies
from about 3.6 yr at the equator to about 5.1 yr at the
Arctic and Antarctic Circles.

¢. The model signal space—time waveform

Using the solar-cycle forcing function to drive our
EBM, we generate a monthly space—time waveform of
the solar-cycle response for the 100 years, 1894-1993.
From Figs. 4 and 5 we can see the solar cycle was near
its peak during 1980. Figure 7 shows the model-gen-

20 B (Real Part)?
] 0 (imag Part)?
o 1.5 -
@ o
2 1.0-
o :
0.5 5
0.0 - e O I I | 1R

0.06 0.08 0.10 0.12 0.14
Frequency (year?)

Fi1G. 6. Power spectrum of the solar irradiance forcing function (see
Fig. 5) over the solar-cycle frequency band. The power at each fre-
quency has been decomposed into the squares of the real and imag-
inary parts of the discrete Fourier transform.
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January 1980

Fic. 7. The solar-cycle surface temperature response (°C) generated by the EBM for (top) January
and (bottom) July 1980.

erated response (the signal) to the solar forcing func-
tion for January and July 1980. Notice that the response
is smallest over the wintertime polar region. The power
spectrum of the model signal from detection box 4 in
the western Atlantic Ocean and from detection box 24
in central Asia is shown in Fig. 8. Comparing Fig. 8
with Fig. 6, we can see how the power in the forcing
has been redistributed differently in the response of box

4 (ocean) and box 24 (land). This probably is due to
the differing heat capacities of land and ocean. This
type of geographically based phase shift is part of the
discrimination capability of the optimal filter. For an
artificial forcing function of constant amplitude (1.0
W m~?) and period (10 yr), the geographical distri-
bution of the amplitude of the response (°C) and the
phase lag of the response behind the forcing (months)
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F1G. 8. Power spectrum of EBM solar-cycle response over the so-
lar-cycle frequency band, as in Fig. 6, for (top) detection box 4
(ocean) and (bottom) box 24 (land). See Fig. 2 for locations of the
detection boxes.

is shown in Fig. 9. Note that both fields vary consid-
erably over the earth.

6. The square of the signal-to-noise ratio

We have now described all the elements needed to
build the optimal filter and to calculate the scaling fac-
tor. Before we proceed we examine in more detail the
square of the signal-to-noise ratio, y2. Equation (2.5)
allows us to calculate the contribution made to y? by
each eigenmode and frequency of the space—time
EOFs. From Fig. 8, we expect the two frequencies,
0.09 yr~! and 0.10 yr™!, to contribute the most to 2.
Figure 10 shows the contributions to v for the GFDL-
and MPI-derived space—time EOFs. As can be seen,
the contributions are spread over many of the higher
eigenmodes and do not come from only the first few
eigenmodes. In these higher eigenmodes the associated
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eigenvalues are small and the projection of the signal
onto the space—time EOF relatively large, giving a
large signal-to-noise ratio. For eigenmode numbers
greater than about 21 the contributions to y> may be
spurious. Excluding these contributions to y? reduces
the signal-to-noise ratio by about 10% and, hence, in-
creases the filter pass-thru error, but at the same time
results in a reduction in the filter sampling error (see
below). The net result is about the same as including
all the eigenmodes.

7. Errors in the optimal filter

Each of the components used in the construction of
the optimal filter can contribute to the uncertainty in
the final estimation of the scaling factor. We now ex-
amine the sources of these errors.

a. Filter pass-thru error

Let us assume that we have a ‘‘perfect’’ optimal filter
available. It might seem that this filter would not be a
source of error in the calculation of the scaling factor.
However, our observed data, which is used as input to
the filter, is composed of a signal and natural climate
variability. This ‘‘perfect’” filter will let the signal pass
through, but at the same time, will also pass through
any noise that by chance has the same space—time
structure as the signal. Thus, it is impossible to build a
filter that does not pass through some component of the
noise. It can be shown that this error variance, which
we call the filter pass-thru error, has a theoretical value
that is equal to the inverse of the square of the signal-
to-noise ratio, 1/y?2, where y? is given by Eq. (2.5).
For the GFDL-derived filter 1/y2 = 0.21, and for the
MPI filter 1/y? = 0.05.

b. Filter sampling error

We have seen that all optimal filters will have pass-
thru error, but how does this error vary from one re-
alization of a filter to another? The filter sampling error
0 %mp gives us an estimate of how much the scaling
factor might vary if we used filters made from the same
signal waveform but from different realizations of noise.
Assume we have 10 000 years of a coupled-model con-
trol run. By dividing this into ten 10°-yr segments we
could create ten optimal filters. Each of these ten filters
is built from a different 10°-yr sample of noise and the
same signal. For each filter we calculate . The variance
of these ten values of « gives us an estimate of the filter
sampling error. To estimate the filter sampling error vari-
ance we used our EBM, with noise forcing, to generate
a 10*-yr control run. From this, ten optimal filters were
constructed and the filter sampling error calculated. The
results are shown in Fig. 11.

c. Filter bias error

The most obvious way in which bias error will enter
into the construction of the optimal filter is through the
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Amplitude of Response ("C)

FiG. 9. (top) Contour lines show amplitude of EBM response (°C) to a forcing function of constant amplitude (1.0 W m™?) and
phase (0.10 yr™") for one complete cycle. (bottom) Contour lines show phase lag of EBM response (months) to the same forcing

function,

model-generated climate variability. It is known that
the space~time structure of the model noise is different
for the GFDL and MPI models (Kim et al. 1996b).
The amplitude of the noise in the MPI model is about
half of that in the GFDL model. There are also differ-

ences in the spatial structure of the noise. The MPI
model produces no ENSO cycle, while the GFDL
model has only a weak ENSO cycle. While most of the
power of ENSO events is in the higher frequencies out-
side of the solar-cycle frequency band, there is proba-



15 SEPTEMBER 1996

0.8

- )

GFDL

0.6

YZ
04
ik s

P

0.2

PRI A

dndend

sk

MPI

sddd

P

Y FUTY FWWY S

02040608 101214 171618
Loid

STEVENS AND NORTH

2603

Contributions to y?

F1G. 10. Contributions made to the square of the signal-to-noise ratio > at each frequency in the solar-cycle band
and for each eigenmode. (top) Contributions using the GFDL-derived space—time EOFs in Eq. (2.5) and (bottom) MPI-

derived space—time EOFs.

bly some power in the solar-cycle band (Mann and
Park 1994 ). This will result in an underestimate of the
noise at those frequencies. These differences will di-
rectly affect the space—time EOFs and eigenvalues, and
through them affect the calculation of the signal-to-
noise ratio and the scaling factor. However, we have

no way of satisfactorily estimating this type of model
bias error.

The second way in which bias error will enter into
the construction of the optimal filter is through the gen-
eration of the signal waveform. The filter bias error
O %iss gives us an estimate of how much the scaling fac-
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Fic. 11. Estimation of the filter sampling error by using the ob-
served data as input to the 10 EBM-derived optimal filters. The
dashed line is the mean of the resulting 10 values of the scaling factor
a. .

tor might vary if we used filters built from the same
realization of noise, but with different signal wave-
forms. To estimate the filter bias error, we used the
EBM to generate different signal waveforms by vary-
ing the depth of the mixed layer over a reasonable range
of values. We then built a set of optimal filters using
these different signals and the same noise realization
(GFDL or MPI). For each filter we calculated «, as for
the filter sampling error. The variance of these values
of & is an estimate of the filter bias error. The results
for the GFDL and MPI cases are shown in Fig. 12.

d. Total error estimate

We can now form an estimate of the total error in
the scaling factor due to these errors in the construction
of the optimal filter. Assuming these errors are inde-
pendent of each other, we have

(7.1)

For the GFDL-derived filter 02, =~ 0.21 + 0.23
+0.009 =~ 0.45 or oy =~ 0.67 and for the MPI-
derived filter 02, =~ 0.05 + 0.23 + 0.002 ~ 0.28 or
et ~ 0.53. .

2 ~ 2 2 2
T total =~ 1/7 + T samp + T pias+ -

8. Scaling factor results

We now present the results of the calculation of the
scaling factor and its uncertainty. For the GFDL-de-
rived filter @« = 1.30 = 0.67, where the uncertainty is
+ 0o - For the MPI-derived filter o = 0.93 * 0.53. To
evaluate the statistical significance of these results we
make the assumption that « is a random variable with
a Gaussian distribution. We want to test the null hy-
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pothesis that there is no solar-cycle signal in the ob-
served data. If the null hypothesis were true, we would
expect a mean value for « of zero. However, we assume
a signal is present in the observed data and that it has
the same phase as the model-generated signal, which
implies a scaling factor greater than zero. This allows
us to use a one-tailed test of the null hypothesis. In the
GFDL case, the value for a of 1.30 is 1.940,,, from
zero. This implies a risk in rejecting the null hypothesis
of 2.6%, or a confidence level of 97.4%. In the MPI
case, the value for « of 0.93 is 1.750 . from zero. This
implies a risk of rejecting the null hypothesis of 4.0%,
or a confidence level of 96.0%.

These are significant results, but we must remember
there is unestimated bias error in the calculation of the
noise covariance matrix and the signal. The estimate of
the filter pass-thru error is theoretical and, hence, only
strictly valid when there are a large number of estimates
of a. In summary, these results imply a highly signifi-
cant value for the scaling factor a, but the estimated
error is probably underestimated.

a. Results from different regions

The results presented so far have used all 36 of the
detection boxes in all the computations. However, we
can repeat the same procedures using subsets of the 36
boxes from different regions of the earth. For each sub-
set of boxes, a complete set of space—time EOFs and
eigenvalues can be calculated and, hence, an optimal
filter constructed. The results for the global case and
six regions are presented in Tables 1 and 2, as well as
in Fig. 13. In the estimation of the total error, we have
assumed that the filter sampling and bias errors for each

N
o

O GFDL
B MPI

-
($)]

o

o —h

w o
PR I T T

o
o

40 45 50 55 60 65 70 75 80
Mixed Layer Depth (m)

FiG. 12. Estimation of the filter bias error. For each mixed layer
depth a new signal waveform was generated and a new optimal filter
built. The observed data was used as input to the different filters and
the scaling factor calculated. Results shown for both GFDL and MPI
based optimal filters.
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TaBLE 1. Calculated statistics based on the optimal filter built from the GFDL coupled-model noise and the EBM signal. The column
labeled Yo is the nonoptimized signal-to-noise ratio computed by using Eq. (2.7). The column labeled o is the total error estimate for
the scaling factor a and is calculated using Eq. (7.1). The column labeled ‘‘c.l.”” is the confidence level of rejecting the null hypothesis that

no response to the solar cycle is present in the observed data.

Region Boxes

Yropt Y 1y 2 O otal a cl
Global 36 1.41 2.18 0.21 0.67 1.30 97.4
Tropics 20 1.78 2.02 0.25 0.70 1.11 94.3
Extratropics 16 0.82 1.11 0.81 1.02 1.14 86.9
N. Hemisphere 24 1.16 1.87 0.29 0.73 0.89 88.9
S. Hemisphere 12 1.43 1.78 0.32 0.75 1.59 98.3
W. Hemisphere 16 1.21 1.81 0.31 0.74 1.16 94.2
E. Hemisphere 20 1.20 1.83 0.30 0.73 1.34 96.6

subset of boxes are the same as for all 36 boxes. Notice
that the error estimates are smallest for the global re-
sults. Also, notice that the error estimates for the MPI
results are smaller than for the GFDL results. This is
due to the smaller amplitude of the climate noise in the
MPI model. In Table 3 we show the results from an
optimal filter made from the 10* years of EBM noise
used to estimate the filter sampling error. The consis-
tent results from the global and regional calculations
give us added confidence in the power and validity of
the optimal filtering method.

b. Lagged data test

As a test of our method we can ask the following
question: what result would we expect if we lagged the
observed data and used it as input to the optimal filter?
For a lag of zero we would expect « to be at its max-
imum value. As the lag is increased, « should decrease
until the lag is equal to one-half of the cycle length. At
this point, the signal in the input data would be exactly
out of phase with the model-generated signal used in
the filter. This behavior should be true for both positive
and negative lags. Since we have only 100 years of
observed data, we can perform this test by using the
middle 90 years (1899-1988) of the data and lagging
it from —5 to +5 yr. The results are shown in Fig. 14
for both the GFDL- and MPI-derived filters.

c. Estimated global response to the solar cycle

Using Eq. (2.14), we can estimate the global annual
mean response of the climate system to the solar-cycle

forcing. We simply mulitiply our estimated value of the
scaling factor « by the global annual mean temperature
response T2 produced by the EBM. This is shown
in Fig. 15 for estimates of a based upon the GFDL,
MPI, and EBM derived optimal filters. The response is
shown as the temperature departure from the 100-yr
global annual mean of the model.

9. Discussion

There are a number of assumpfions that are made
about the ingredients needed to build the optimal filter.
In addition, to estimate the signal in the observed data,
there are assumptions made about the data. These as-
sumptions are listed below.

a. Assumptions about the forcing function and sig-
nal waveform

1) The forcing function used to produce the EBM
signal is an adequate representation of the solar vari-
ability over the last 100 years.

2) The space~time structure of the solar cycle sig-
nal produced by the EBM is a good representation of
the true solar-cycle response in the observed data.

b. Assumptions about the climate variability

1) The space~time structure of the real climate vari-
ability is well represented by the GFDL and MPI cou-
pled climate models.

2) The length of the control runs does not seriously
bias the resulits.

TABLE 2. Same as Table 1 except for use of MPI coupled-model noise.

Region Boxes Yoopt ¥ 1/y2 Cronal a cl
Global 36 2.58 4.63 0.05 0.53 0.93 96.0
Tropics 20 2.49 4.01 0.06 0.54 1.09 97.8
Extratropics 16 1.40 1.94 0.27 0.71 0.96 91.2
N. Hemisphere 24 2.20 4.07 0.06 0.54 0.69 90.0
S. Hemisphere 12 1.69 2.84 0.12 0.59 1.52 99.5
W. Hemisphere 16 1.76 3.28 0.09 0.57 0.41 76.4
E. Hemisphere 20 2.15 3.94 0.06 0.54 1.20 98.7




2606

2.5 1 1 . 1 ] — | -
GFDL
2.0 -
15 -
s t-t-¢-fF---3-1-1
1.0 1 -
1
0.5 -
] A
0.0 1
1 T 1 LB 1] I 1]
GBL TRPXTRP NH SH WH EH
2.5 1 1 1 <1 | 1 L
MPI L
2.0 [~
]
1.5 '“ L‘
3 ] [
0.0 —
1 T 1 1 1 =T i

GBL TRPXTRP NH SH WH EH

FiG. 13. Calculation of the scaling factor for the global and six
regional subsets of detection boxes. (top) Results for the GFDL-based
optimal filter and (bottom) for the MPI-based optimal filter. The
dashed lines show the means of the seven values of the scaling factor
calculated.

¢. Assumptions about the historical data record

1) The 100-year historical record is sufficiently
long.

2) The lack of coverage over large areas of the earth
does not bias the results.

Some of these assumptions are untestable and some
can be improved upon in the future. However, at the
current stage of our research these assumptions are un-
avoidable. To increase the confidence in their validity,
we propose the following:
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F1G. 14. The results of the lagged data test. Ninety years of ob-
served data was lagged and used as input to the GFDL- and MPI-
based optimal filters.

1) the use of coupled ocean—atmosphere climate
models to calculate the space—time waveform of the
response to the solar cycle;

2) the generation of long control runs from other
coupled ocean—atmosphere climate models;

3) examining the possibility of including some long
historical surface temperature records of different
lengths. This would allow us to utilize the long (>100
yr) instrumental records from several sites around the
world.

Two possible ways to improve the performance of the
method are

1) the use of cyclostationary EOFs (Huang and
North 1996; Kim et al. 1996a);

2) calculation of the optimal months to use in the
covariance matrix to minimize its eigenvalues and,
therefore, maximize the signal-to-noise ratio.

The results we have presented here demonstrate the
potential power of the method of optimal space—time
filtering for detection problems of this type. We are
very confident that the method has succeeded in de-

TABLE 3. Same as Table 1 except for use of EBM noise.

Region Boxes Yropt vy 1/y? Crotal @ cl.
Global 36 1.68 2.08 0.23 0.68 1.13 95.2
Tropics 20 *1.70 1.99 0.25 0.69 0.92 90.8
Extratropics 16 1.26 1.55 0.42 0.81 0.77 829
N. Hemisphere 24 1.47 1.90 0.28 0.72 0.93 90.2
S. Hemisphere 12 1.41 1.52 043 0.81 145 96.3
W. Hemisphere 16 1.20 1.55 0.42 0.81 1.29 94.4
E. Hemisphere 20 1.33 1.56 0.41 0.80 0.77 83.2
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Fic. 15. Estimated global annual response to the solar-cycle forc-
ing. The scaling factor was calculated using the GFDL-, MPI-, and
EBM-based optimal filters and the observed surface temperature data.

tecting the solar-cycle response in the observed data.
These results obviously will be subject to future revi-
sion with improvements in formulating the components
comprising the optimal filter.
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