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 Loehle and McCulloch (LM, submitted to Energy and Environment as a 

correction to Loehle 2007) construct a Global Temperature Reconstruction for 16AD – 

1935 AD based on 18 peer-reviewed published non-treering proxy series.  These are the 

same 18 series used by Loehle (2007), with the dating of 4 of the series corrected by a 

50-year shift.   Each series was newly interpolated and smoothed with a 29 year moving 

average by CL over the period 1AD – 1980AD, to the extent available.  Each series was 

converted to bimillennial anomalies by subtracting out its own mean.  The global 

temperature reconstruction is the unweighed average of these anomalies.  Because the 

number of available series drops abruptly from 11 to 8 in 1935, i.e. to less than half the 

maximum number of series, the reconstruction was terminated in 1935.  The 18 smoothed 

series and their residuals about the global average are individually graphed at the end of 

this note.  The smoothed series, as used in the reconstruction, are online via 

<http://www.econ.ohio-state.edu/jhm/agw/> .  Links to the raw data have been compiled 

by Stephen McIntyre of climateaudit.org, at <http://www.climateaudit.org/?p=2393>.   

# Short name First obs. Last obs. 
jV̂  jŜ  

1 Dahl-Jensen 35 1980 0.151 0.388 

2 Gajewski 50 1953 0.214 0.463 

3 Cronin 20 1980 1.702  1.305 

4 Keigwin 16 1910 0.224 0.474 



5 Nyberg 148 1935 0.217 0.466 

6 Korhola 16 1935 0.038 0.196 

7 Tan 16 1970 0.334 0.578 

8 Yang 16 1975 0.187 0.432 

9 Magnini 16 1920 0.149 0.386 

10 deMenocal 16 1847 1.306 1.143 

11 Holmgren 16 1980 0.481 0.693 

12 Calvo 16 1945 0.074 0.273 

13 Viau 16 1980 0.059 0.242 

14 Stott MD982181 24 1921 0.228 0.477 

15 Stott MD982176 16 1795 0.148 0.384 

16 Ge 30 1980 0.172 0.415 

17 Farmer 16 1935 0.270 0.519 

18 Kim 16 1925 0.079 0.280 

 



 

 



 As noted in LM, standard errors and confidence intervals are somewhat 

complicated by the presence of cross-sectional heteroskedasticity (unequal variances) in 

the data.  The variance about the global mean temperature of Calvo et al. (2002), for 

example, is almost 7 times as great as that of Viau et al. (2006).  Because of this 

heteroskedasticity, conventional local, or pointwise variance estimates will not have their 

customary χ2 distribution, and hence the Student t distribution (see e.g. Casella and 

Berger 2002) will not provide accurate critical values to form confidence intervals.  

Instead, the LM standard errors exploit the panel (pooled cross section/time series) 

structure of the data to estimate each series’ variance consistently from its time series 

residuals.   

 It is assumed in LM that the demeaned temperature reconstruction Xjt from proxy 

j at time t provides an unbiased observation on global mean temperature anomaly μt at 

time t:  

  jttjtX εμ += ,  

The errors εjt, which contain both the proxy’s error in measuring true local temperature 

anomaly and the true local temperature anomaly’s deviation from the global temperature 

anomaly, are assumed to be normally distributed with mean 0 and proxy-specific 

variance Vj, and to be independent across proxies at each point in time.  As in Loehle 

(2007), μt is estimated by the equally weighted mean  
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where J(t) is the set of proxies that are active at time t and nt is the number of such 

proxies (nt = 18 for most dates in LM, as plotted above).  Under the maintained 

assumption of independence, the variance of mt is therefore  
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 The proxy-specific variances Vj are consistently estimated over the time-series 

dimension, with a conservative adjustment for degrees of freedom, by  
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where T(j) is the set of dates for which proxy j is active, and Nj is the number of such 

dates.  These panel variance estimates and the corresponding standard deviation estimates 

 are tabulated in Table 1 above.   2/1ˆˆ
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 The heteroskedasticity-adjusted standard error of mt is then  
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During 148 – 1425 AD all 18 proxies are active and st is constant at 0.136 °C.  The 

standard errors increase gradually as proxies drop out, rising to 0.178 °C in 1935 when 

only 11 proxies are still active.  The red line in the following graph shows st for the entire 

period 16 AD – 1980 AD.  It may be seen that at both ends, as the number of included  

 



series drops off, the standard error increases inordinately.  Accordingly, the published 

reconstruction only includes the period 16AD - 1935 AD, when at least half of the 18 

series are active.   

 

 Although each Vj is estimated with almost 2000 points in time, the 29-year 

running mean implies that effectively at most only about 60 of these are independent.  

Assuming approximately 60 degrees of freedom, a 95% confidence interval extends 

2.00st above and below mt.  The means, standard errors, and CI bounds for this graph are 

tabulated at <http://www.econ.ohio-state.edu/jhm/agw/> and (Loehle’s site).    



 

 The following graph shows, in red, conventional “local” standard errors that are 

computed for each point in time using only that date’s squared residuals.  As noted 

above, since the errors for the 18 series have very unequal variances, these standard 

errors are not governed by the conventional chi-squared distribution, and hence the 

standard Student t critical values will be invalid for t-statistics computed from them.  The 

“panel” standard errors shown in blue and reported in LM are far less erratic, and more 

nearly conform to the assumptions required to use the standard Student t critical values.  

When the number of proxies is constant, it can easily be shown that the square of the 

constant panel standard error is simply the average of the squares of the erratic local 

standard errors, since the two measures use exactly the same squared errors, simply 

combined in a different fashion.   



 

 If all proxies had equal variance, the equally weighted or “ordinary least squares” 

average of the proxies would provide the optimal estimator of the true population mean, 

and omitting any proxy would increase the standard error of the equally weighted 

average.  However, it can easily be shown that if any proxy variance Vj is greater than the 

average of the all the available proxy variances times the factor (2nt-1)/nt, omitting that 

proxy actually reduces the standard error of the equally weighted proxy average.  The 

following graph compares the 18 proxy variances (the horizontal lines) to this value (in 

blue), which changes somewhat with the identity of the included proxies.  It may be seen 

that two of the proxies, which turn out to be #3 Cronin and #10 deMenocal, are actually 

so noisy as to be detrimental to the unweighted proxy average.   



 

 The following graph shows the full sample or OLS standard errors (in blue), along 

with the standard errors that result when these two series are culled, or omitted from the 

sample (in red).  (The third curve, in green, will be discussed below.) 



 

 The next graph shows the culled average, along with 95% confidence intervals.  It 

may be seen that omitting these two series happens to somewhat attenuate the shape of 

the reconstruction.  Nevertheless, the MWP and LIA are still significant (or right at the 

margin of significance) over essentially the same period as with the full sample.  Culling 

the sample in this manner does not constitute “data mining,” “cherry picking,” or “lemon 

dropping” (reverse cherry picking), however, since it is done according to the objectively 

computed time-series variance of the proxy in question, and without regard to the sign of 

its impact.   



 

 The standard error of the estimate of the mean can be even further reduced with 

Weighted Least Squares estimates, which optimally weight each proxy in inverse 

proportion to its variance.  In WLS, it pays to include every proxy, though the ones with 

the highest variances receive very little weight and make very little improvement to the 

weighted average.  The WLS standard errors are shown in green two graphs above.  The 

WLS point estimates, below, are similar to the culled estimates.  This is not surprising, 

since culling is just a crude form of weighting.  Again, the MWP and LIA are significant 

over essentially the same period as with the unweighted full sample estimates.   



 



 Although the culled and WLS estimates make more efficient use of the data, it 

was decided to stick with the more readily understood full-sample OLS estimates in the 

published reconstruction.   

 Strictly speaking, the adjustment for degrees of freedom in (1) above is valid only 

when the errors are homoskedastic – an assumption we are explicitly avoiding.  When the 

errors are heteroskedastic, the correct adjustment requires solving 18 linear equations for 

the 18 unbiased variance estimates.  Although doing this somewhat changes the 

individual variance estimates, it was found that it had virtually no perceptible effect on 

the bottom line standard errors.  Accordingly, the simpler approximate adjustment in (1) 

was used.   

 The maintained assumption of cross-sectional independence of the errors is not 

unreasonable with the present data set, given the good geographical distribution of the 

proxies used.  In studies with a substantially denser network of proxies, however, spatial 

autocorrelation would eventually become an important consideration.  One way to take 

this into account would be to model each error as having two components:  The first 

would be an idiosyncratic measurement error with a proxy-specific variance, as in LM.  

The second component would reflect the difference between the local true temperature 

anomaly and the global anomaly, and would have a pairwise covariance that was some 

declining function, to be empirically determined, of the great circle angular distance 

between the pair of proxies in question.  Global temperature could then be efficiently 

estimated by means of Generalized Least Squares (Aitken’s formula), using the complete 

spatial covariance matrix.  Such a strategy would be more efficient than the coarse 

“gridding” procedure commonly used in climate studies.   
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