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Low cloud properties influenced by cosmic rays
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Abstract

The influence of solar variability on climate is currently uncertain. Recent observations have

indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud

cover. Surprisingly the influence of solar variability is strongest in low clouds (≤ 3km), which

points to a microphysical mechanism involving aerosol formation that is enhanced by ionisation

due to cosmic rays. If confirmed it suggests that the average state of the Heliosphere is important

for climate on Earth.
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The recent discovery that total cloud cover and solar modulated galactic cosmic ray

flux (GCR) are correlated [1, 2] suggests that solar variability may be linked to climate

variability through a chain involving the solar wind, GCR and clouds. The solar wind is a

continuous flow of energetic charged particles (mainly protons and electrons with energies

∼KeV) which are released from the sun as a plasma carrying a fingerprint of the solar

magnetic field throughout inter-planetary space. Influences from the solar wind are felt

at distances well beyond Neptune, possibly up to 200 AU from the sun. This region of

space is known as the Heliosphere. GCR consists of very energetic particles (mainly protons

with typical energies 1 - 20GeV) that originate from stellar processes within our galaxy.

Their flux through the solar system is modulated by the shielding effects of the solar wind

whose strength is dependent on the level of solar activity. Those incident at the Earth are

additionally modulated by the geomagnetic field [3, 4] with cut-off rigidities of 15 - 0.1GeV

from equator to geomagnetic poles. The implication from the observed total cloud cover -

GCR correlation is that climate on Earth could be influenced by the average state of the

Heliosphere (Heliospheric Climate).

Solar forcing of the Earth’s climate can be classified into direct and indirect processes.

The simplest direct mechanism is through variations in solar radiative output which is known

to vary by 0.1% over the last solar cycle, this corresponds to a change of 0.3 W/m2 at the top

of the Earth’s atmosphere. It is currently believed that this effect is too small to have had

a dominant influence on surface climate, although variations in solar irradiance may have

been larger back in time [5]. Indirect effects include solar induced changes in atmospheric

transparency influencing the radiative budget of the planet [1, 2, 6, 7, 8, 9]. One possibility

is that changes in the solar output of ultra violet (UV) radiation affects temperatures in the

stratosphere through absorption by ozone, which has the potential to influence the large-

scale dynamics of the troposphere [10, 11].

The observed GCR-cloud correlation introduces another quite different solar influence

with the suggestion that atmospheric ionisation produced by GCR [1, 2] affects cloud mi-

crophysical properties. GCR is the dominant source of atmospheric ionisation at altitudes

1-35km over the land and 0-35km over the oceans with a maximum at ∼ 15km due to at-

mospheric depth. These are regions of the atmosphere in which clouds form. Clouds are

of considerable importance for the Earth’s radiation budget, although their exact role is

currently uncertain. Their influence on the vertically integrated radiative properties of the
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atmosphere result from cooling through reflection of incoming short wave radiation, and

heating through trapping of outgoing long wave radiation. The net radiative impact of a

particular cloud is mainly dependent upon its height above the surface and its optical thick-

ness. High optically thin clouds tend to heat while low optically thick clouds tend to cool

[12]. The current climatic estimate for the net forcing of the global cloud cover is ∼ 27.7

W/m2 cooling [12, 13, 14]. Thus a significant solar influence on global cloud properties is

potentially important for the Earth’s radiation budget [1, 2, 7]. However, the spatial proper-

ties of cloud formation vary considerably. For example, the physics of high ice clouds is quite

different to that for low liquid clouds [15] thus atmospheric ionisation need not influence

all cloud types. It is imperative to understand which cloud types are influenced by GCR

not only from a radiative point of view but, perhaps more importantly, for identifying a

physical mechanism. Since atmospheric ionisation from GCR reaches a maximum at high

altitudes and latitudes, intuitively, one might expect this is where clouds would feel the

greatest effect. The surprising new result presented here is that only low cloud properties

are varying with GCR. However, since cloud droplets (in the atmosphere) always condense

on an aerosol, this is in agreement with a mechanism where changes in the atmospheric

aerosol distribution influences low liquid clouds. It has recently been shown that ionisation

dominates aerosol production and growth rates when ionisation levels are low and trace gas

concentrations are high such as is found in the lower atmosphere [16, 17].

State of the art satellite observations of cloud properties are available as monthly averages

from the International Satellite Cloud Climate Project (ISCCP) D2 analysis derived from

the Top Of Atmosphere (TOA) radiance for the period July 1983 to September 1994 [18, 19,

20]. Infrared (IR) measurements (uncertainty 1-2K [21]) are preferred due to their superior

spatial and temporal homogeneity over visual observations that can only be detected during

daylight. Cloud cover is obtained from an algorithm using the TOA IR statistics to identify

the cloudiness on an equal area grid (280km x 280km). Cloud top temperatures (CT) and

pressures (CP) are obtained from an ISCCP IR model constrained by water vapour and

vertical temperature profiles retrieved from the TIROS Observed Vertical Sounder (TOVS)

[20]. CT and CP are found by assuming an opaque blackbody cloud, and adjusting the

cloud’s pressure level (effectively cloud height) in the model until the reconstructed outgoing

IR flux at TOA matches that observed. Based on retrieved CP, clouds are divided into Low

> 680hPa (< 3.2km), Middle = 680−440hPa (3.2−6.5km), and High < 440hPa (> 6.5km).
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Figure 1 indicates that a 2-3 % change in low cloud cover correlates with GCR over

the whole period, while the middle and high clouds do not (uncertainties in cloud cover

≤ 1% [22]). The spatial distribution of this low cloud cover correlation is shown in Fig. 2a.

Regions displaying a correlation r ≥ 0.6 cover a highly significant 15.8 % fraction of the

Earth surface - see Fig. 2 caption. The probability of obtaining such a surface fraction by

chance was found to be better than 10−3 from an ensemble of Monte Carlo simulations. Each

member of the ensemble consisted of N independent artificial cloud time series, where N

(∼ 160) was the spatial degree of freedom determined from spatial cloud correlations. The

most restrictive test was by generating the artificial cloud series from a fourier transform of

the real cloud data, randomizing the phases, and fourier transforming back. Note that the

high correlation in Fig. 1c, where r = 0.63 and r = 0.92 for the 12 month running mean

(confidence limits assuming t-distribution < 10−5), is obtained by taking the global average

of cloud anomalies used in Fig. 2a which reduces fluctuations due to both instrument noise

and internal climate variability.

However, at these time scales GCR ionisation is not the only mechanism affecting low

clouds, there are of course many other decadal processes in the climate system which are

important. The small differences in leads and lags are close to the satellites resolution

and one should not expect a perfect correlation. What is surprising is that despite these

limitations a signal of solar variability in low cloud cover is dominant at time-scales longer

than 1 year. Svensmark [2] argued that there is a better agreement with GCR rather than

solar irradiance for total cloud cover. This is also true for the low cloud cover in Figure 1c,

which suggests that low cloud cover is responding to cosmic ray ionisation in the atmosphere

rather than direct changes in solar irradiance.

Currently satellites cannot detect multi-layer cloud, thus high and middle clouds can

obscure clouds below. From this point of view low clouds contain the least contaminated

signal giving greater confidence to this result. However, if a cloud is transmissive then the

satellite observes both radiation from below the cloud and radiation from the cloud itself.

Since ISCCP defines all clouds to be opaque, the CT of transmissive clouds is overestimated

such that their altitude appears lower in the IR model than in reality. For the case of

transmissive clouds CT represents a weighted average based on emissivity of the clouds

present in a column scene. However, the long term global trend in low clouds is not explained

by an artifact due to mixing with clouds from above since no GCR signal is apparent in the
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middle and high clouds over the period of observations (Figures 1a and b). But low clouds

could be contaminated with overlaying very thin undetected transmissive cloud, e.g., high

thin cirrus, and the signal of solar variability could be due to undetected high cloud. This

is perhaps more intuitive since GCR atmopsheric ionisation is greater at higher altitudes,

and stratospheric heating due to UV possesses a strong solar signal [23]. However, it will be

shown that this is not the case.

Although the ISCCP analysis poorly detects high very thin cloud, a comparison with

HIRS (High resolution Infrared Radiation Sounder) measurements suggests that ISCCP

captures the general trends of high thin cloud [24]. If a solar signal does exist in high cloud,

for whatever reason, one would expect to see a signal in those high clouds that are detected

by ISCCP, Figure 1a. However, no such signal is observed, thus there are good reasons to

believe that the long term trends in low cloud cover are due to real low clouds responding

to GCR.

The low cloud top temperature parameter also correlates with GCR over large regions

of the Earth. Figure 2b reveals a band of significantly high correlation centered around the

tropics, while there are no significant correlations for middle and high cloud top tempera-

tures (not shown). The ISCCP IR statistics cannot easily distinguish very low cloud top

temperatures, which are relatively warm, from surface temperatures. Thus the modelled

surface temperatures, ST, will be contaminated with temperatures from very low cloud. It

is interesting to note that ST contains a very similar GCR correlation map (not shown) as

that for low cloud CT in Fig. 2b. The lack of correlation at high latitudes in Fig. 2b is

currently not understood, but may be a feature of a possible GCR-cloud mechanism outlined

below.

The opaque cloud assumption in the ISCCP IR model excludes micro-physical properties

and so constrains cloud variability to appear only in cloud ’model height’, thus introducing

an element of artificial variability into CT. Observed properties of low level maritime clouds

suggests that they are not opaque [25]. Relaxing the opaque assumption allows for cloud

variability to additionally manifest itself through changes in cloud optical density. Cloud

optical density depends on processes affecting the cloud droplet size distribution, and cloud

vertical extent. Since all atmospheric liquid water droplets form on cloud condensation nuclei

(CCN), the droplet size distribution depends on the density of atmospheric aerosols activated

as CCN, while cloud thickness is influenced by atmospheric vertical temperature profiles.
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The abundance of CCN is determined by both the level of supersaturation and the number of

aerosols present in the atmosphere able to act as CCN. Increases in supersaturation, typically

between 0.1% and a few percent, activates increasingly smaller aerosols. A solar signal could

enter low cloud properties through influencing: atmospheric vertical temperature profiles,

water vapour, or aerosol to CCN activation processes. In the following it is argued that the

latter is a more likely explanation.

Thermodynamic properties of the atmosphere where low clouds form are affected via

changes to tropospheric circulation. Studies with general circulation models have indicated

that solar induced variability in the stratosphere can influence the vertical circulation of the

troposphere [10, 11]. However, TOVS observations of the vertical profiles of water vapour

and temperature demonstrate little correlation with GCR. This suggests that the influence

of variability in solar irradiance on local thermodynamic properties in the atmosphere is not

responsible for the observed changes in low cloud properties. This might not be surprising

given that variability in solar irradiance agrees poorly with changes in low cloud properties

[2].

Assuming typical atmospheric water vapour saturation, the abundance of CCN is deter-

mined through properties of the background aerosol size distribution (∼ 0.01 − 1.0 µm).

Production of aerosol can be due to many processes involving: gas-particle conversion,

droplet-particle conversion, i.e., evaporation of water droplets containing dissolved matter,

and bulk particles from the surface, e.g., smoke, dust, or pollen [15]. Observations of spec-

tra in regions of low cloud formation indicate that aerosols are produced locally. In the

troposphere it has been suggested that ionisation contributes to the gas-particle formation

of ultrafine (< 0.02 µm) aerosol. Model studies indicate that this process could contribute

a stable concentration of several hundred particles per cm3 at sizes > 0.02 µm [26]. This is

comparable to the total number of condensation nuclei in maritime air (∼ 100 cm−3) [15].

Observations of aerosol growth into the aged aerosol distributions generating CCN have been

interpreted to be influenced by the presence of ionisation [16, 26, 27]. A recent study of

ion mediated nucleation by Yu and Turco [17] indicates that the nucleation rate of ultrafine

aerosol is generally limited by ionisation from GCRs in the lower maritime atmosphere. In

contrast, they show that nucleation in the upper atmosphere is limited by concentrations

of trace gases, e.g., H2SO4. Although it is currently uncertain how the ultrafine aerosol

evolves into CCN it could explain why only low cloud properties are responding to GCR
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modulation. It is less clear why this modulation should be restricted to lower latitudes, seen

particularly in low cloud top temperatures (Fig. 2b), which appears to contradict a larger

geomagnetic shielding of cosmic rays at the equator [1]. However, ion mediated nucleation

saturates when levels of ionisation are high relative to concentrations of trace gases [17], so

a latitudinal dependence of either or both of these could be involved. This is currently an

area of further research.

Based on the ISCCP D2 IR cloud data there is a clear correlation between GCR and

properties of low clouds in contrast to middle and high clouds. Since the correlation is

seen both in low cloud cover and low cloud top temperature, the case for solar induced

variability of low clouds is strengthened. Observations of atmospheric parameters from

TOVS do not support a solar-cloud mechanism through tropospheric dynamics influenced

by UV absorption in the stratosphere. Instead, it is argued that a mechanism involving

solar modulated GCR is possible. It has been speculated for some time that ionisation is

important for aerosol production and growth in the troposphere. Recent studies indicate that

ionisation is a limiting process for aerosol nucleation in the lower maritime atmosphere, thus

it is not unreasonable to imagine that systematic variations in GCR ionisation could affect

atmospheric aerosols acting as CCN and hence low cloud properties. If such mechanisms

can be confirmed the implications for clouds and climate are far reaching, and suggests that

Heliospheric climate can influence climate on Earth. Based on observations, Lockwood et

al. have shown that since 1964 the strength of the solar magnetic flux, shielding the Earth

from GCR, has increased by 41% while GCR has decreased by 3.7% [28]. Further, they

claim that the solar magnetic flux has more than doubled over the last century. Based on

this doubling and assuming a GCR - Low cloud mechanism exists, a crude estimate for the

century trend in low cloud radiative forcing is a warming of 1.4 Wm−2 [29]. Thus, if there

is a systematic variation in low cloud properties caused by solar variability it could have

important implications for the evolution of Earth’s climate.
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FIG. 1: Global average of monthly cloud anomalies for a) high (< 440 hPa), b) middle (440 − 680

hPa), and c) low (> 680 hPa) cloud cover (blue). To compute the monthly cloud anomalies the

annual cycle is removed by subtracting the climatic monthly average (July 1983 - June 1994) from

each month on an equal area grid before averaging over the globe. The global average of the

annual cycle over this period for high, middle and low IR detected clouds is 13.5%, 19.9%, and

28.7% respectively. The cosmic rays (red) represent neutron counts observed at Huancayo (cut-off

rigidity 12.91 GeV) and normalised to Oct 1965.
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FIG. 2: Global correlation maps of GCR with anomalies of a) Low IR cloud cover, and b) Low

IR cloud top temperature (CT). The low IR cloud cover is calculated as in Fig. 1c, while the low

cloud CT are obtained from the ISCCP IR model. White pixels indicate regions with either no

data or an incomplete monthly time series. The correlation coefficients, r, are calculated from the

12 month running mean at each grid point. Regions of the Earth with r ≥ 0.6 are a) 15.8%, and

b) 34.6%. The probability of obtaining these surface fractions by chance is better than 10−3.
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