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The role of General Circulation Models (GCMs) has become predominantly important
as the practical interest in regional impacts from anthropogenic greenhouse gases such
as carbon dioxide (CO2) grows. This first report documents the quality of GCMs as a
tool for describing and predicting ‘global warming’ and the related geographical
pattern of climate change from the CO2 added to Earth’s atmosphere.

I Validation problems in climate modelling and General Circulation Models (GCMs) 

Quantification of the impact of anthropogenic CO2 forcing, as well as its connection to
global warming and other natural or man-made climatic forcings, requires validation of
GCMs and reduction of their common deficiencies in simulating important climatic
variables. Recent reviews (Palmer, 2001; Pielke, 2001; Soon et al., 2001; Munk, 2002;
Pittock, 2002; van der Veen, 2002) call for a more comprehensive consideration of
nonlinear processes to describe the interactions among the atmosphere, oceans, land
and ice-covered surfaces. Those media, the reviewers argue, must be treated as
interactive, rather than mere unchanging surfaces or reservoirs, in order to progress in
the study of year-to-year and century-long climate change on both regional and global
scales (i.e., as distinct from the problem of weather prediction). The enormity and
urgency of the scientific task, with modern societal needs for coping with climate
change regardless of the added concerns about anthropogenic CO2 forcing, has led
Pielke (2001: 313), among others, to remind us that ‘there have been no model
experiments to assess climate prediction in which all important atmosphere–ocean–
land surface processes were included’. Observational capability must also advance sig-
nificantly before climate model validation can reach the next level of maturity (Goody
et al., 2002). Robust long-term monitoring of key climate quantities such as thermal and
dynamical outputs of the Sun (Parker, 2000), spectrally resolved infrared radiance
(Keith and Anderson, 2001), cloud properties (Wang et al., 2000; Rossow et al., 2002),
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surface radiative energy fluxes (Wild et al., 2001), mass balance of glaciers (Dyurgerov,
2002; van der Veen, 2002), sea ice thickness (Holloway and Sou, 2002; Preller et al., 2002)
and even a global mass-distribution constraint such as Earth’s mean dynamic
oblateness parameter J2 (Cox and Chao, 2002) would be important improvements.

II Simulations of climate variables

The current generation of GCMs have shown serious gaps and systematic deficiencies
in calculating both regional and global changes for many variables such as temperature,
precipitation, cloud properties and important oceanic variables, including oceanic
circulation, pattern of sea surface temperature, as well as sea surface elevation (sea-
level) and bottom pressure (Palmer, 2001; Pielke, 2001; Soon et al., 2001; Munk, 2002;
Schneider, E.K., 2002; van der Veen, 2002; Huang and Jin, 2002; Davey et al., 2002). 

1 Temperature 

As noted by Johnson (1997), the appearance of the 1990 Intergovernmental Panel on
Climate Change (IPCC) report (Houghton et al., 1990) marked the recognition that all
GCMs suffer from ‘the general coldness problem’, which is particularly acute in the
lower tropical troposphere (below 500 mb) and upper polar troposphere (above 500
mb). The general coldness problem is seen in 104 out of the 105 outcomes, covering the
entire troposphere, from 35 different simulations by 14 climate models. The ubiquitous
cold-bias problem persists to date, as shown in the collection of GCM simulations
compared with observed stratospheric and tropospheric temperatures in Pawson et al.
(2000).

Johnson (1997) suggested that the origin of the cold bias arises from an extreme
sensitivity of GCMs to systematic, aphysical entropy sources introduced by spurious
numerical diffusion, Gibbs oscillations or inadequate sub-grid-scale parameterizations.
Johnson estimated that a temperature bias of 10°C may be expected from only a 4%
error in modelling net heat flux that is linked to any number of aphysical entropy
sources, including those owing to numerical problems with the transport and phase
changes of water in vapor, liquid or ice, and the spurious mixing of moist, static energy.
A follow-on study by Johnson et al. (2000) shed further light on how the cold bias
associated with spurious, positive-definite entropy contaminates the computation of
hydrologic and chemical processes by virtue of their strong inherent dependence on
temperature. Johnson et al., estimated that the error in saturation-specific humidity
doubles for every 10°C increase in temperature. Johnson (1997: 2842) further stressed
that ‘erroneous sources of entropy in atmosphere and ocean models differ in both origin
and intensity. Efforts in coupled climate modeling to simulate accurately energy
exchange across the mutual atmosphere–ocean interface will be extremely difficult . . .
The implication is that atmospheric and oceanic energy balances within coupled
climate models that do not require flux adjustment are suspect’.

W. Soon and S. Baliunas 449



450 Global warming

2 Precipitation

Soden (2000) documented the inability of some 30 different atmospheric GCMs in the
Atmospheric Modeling Intercomparison Project (AMIP) to reproduce faithfully
interannual changes in precipitation over the Tropics (30°N to 30°S). Good agreement
was found between observations and the GCMs’ simulations of atmospheric water
vapour content, tropospheric temperature at 200 mb and outgoing longwave radiation.
However, observations and model simulations of precipitation and net downward
longwave radiation at the surface disagreed. Considering the direct association of latent
heat release by precipitation from moist air to the warming and cooling of the
atmosphere, Soden (2000) noted that the good agreement between the observed and
modelled temperature at 200 mb is surprising, given simultaneously the large
difference between the observed and modelled precipitation fields. One explanation for
the good temperature agreement at 200 mb is that it could be fortuitous because the
atmospheric GCMs were forced with observed sea surface temperatures. Meanwhile,
the modeled interannual variabilities of the hydrologic cycle, seriously underestimated
by a factor of three to four (Soden, 2000), correctly diagnose miscalculation of the pre-
cipitation fields. Based on the models’ relatively constant values of downward
longwave radiation reaching the surface (see Wild et al., 2001 for further quantitative
comparisons around the globe), Soden (2000) points to possible systematic errors in
current GCM representations of low-lying boundary-layer clouds. However, the study
cannot exclude the possibility of errors in algorithms that retrieve precipitation data
from satellite observations, which would emphasize the need for improved precipita-
tion data products.

3 Clouds

Wielicki et al. (2002) offered observational evidence for large decadal variability of the
tropical mean radiative energy budget of the past two decades, which may be explained
by independently observed changes in tropical mean cloudiness. More significantly,
those results highlighted ‘the critical need to improve cloud modeling’ because several
GCMs failed to simulate that large observed variability in the tropical energy budget.
Grabowski (2000) emphasized the importance of proper evaluation of the effects of
cloud microphysics on tropical climate by using models that directly resolve mesoscale
dynamics. Grabowski pointed out that the main effect of cloud microphysics is on the
ocean surface rather than directly on atmospheric processes. Because of the great
mismatch between the timescales of oceanic and atmospheric dynamics, Grabowski
was pessimistic about quantifying the relation between cloud microphysics and tropical
climate. The parameterizations of cloud microphysics and cloud formation processes,
as well as their interactions with other variables of the ocean and atmosphere, remain
major challenges.

4 Ocean thermodynamics and dynamics: tropical ocean climatology and the stability
of the North Atlantic Thermohaline Circulation (THC)

In a systematic comparison of the performance of 23 dynamical ocean–atmosphere
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models, Davey et al. (2002: 418) found that ‘no single model is consistent with observed
behaviour in the tropical ocean regions . . . as the model biases are large and gross errors
are readily apparent’. Without flux adjustment, most models produced annual mean
equatorial sea surface temperature (SST) in the central Pacific that are too cold by 2–3°C.
All GCMs except one simulated the wrong sign of the east–west SST gradient in the
equatorial Atlantic. The GCMs also incorrectly simulate the seasonal climatology in all
ocean sectors and its interannual variability in the Pacific ocean; surface wind stress is
diagnosed as the key parameter leading to those poor outcomes. The shortfall in
interannual variability is more pronounced for zonal wind stress than for SST.
Schneider, E.K. (2002) made the first progress in isolating and understanding specific
intramodel and intermodel disagreements in the simulations of the equatorial Pacific
ocean climatology and variability by using various flux-corrected experiments.

Russell and Rind (1999) noted that despite a global warming of 1.4°C around the time
of CO2 doubling, large regional coolings of up to 4°C were forecasted in both the North
Atlantic Ocean (56–80°N, 35°W–45°E) and South Pacific (near the Ross Sea, 60–72°S,
165°E–115°W) because meridional poleward heat transfer was reduced over the North
Atlantic and local convection was suppressed over the South Pacific. However, Russell
et al. (2000) subsequently demonstrated that their GCM predicted unreliable regional
changes over the Southern Ocean because of the model’s excessive sea ice variability.
Another GCM’s high-latitude Southern Ocean suffers from a large, unphysical drift
(Cai and Gordon, 1999). For example, within 100 years of coupling the atmosphere to
the ocean, the modeled Antarctic Circumpolar Current artificially intensified by 30 Sv
(from 157 to 187 Sv) despite the use of flux adjustments. Cai and Gordon identified the
instability of convection patterns in the Southern Ocean of the GCM to be the primary
cause of that large drift.

The reasons for the projected weakening of the North Atlantic THC in various models
remain unclear because, as Mikolajewicz and Voss (2000) caution, the GCMs give
contrasting roles to individual atmospheric and oceanic fluxes of heat, moisture,
salinity and momentum. Thus, although a complete breakdown of the North Atlantic
THC is predicted for sufficiently strong CO2 forcing in some simulations (Schmittner
and Stocker, 1999, Rahmstorf, 2000), Wood et al. (1999) and Mikolajewicz and Voss
(2000) cautioned that the predicted changes of the THC are very sensitive to parame-
terizations of various components of the hydrologic cycle, including precipitation,
evapouration and river runoff. For example, without a perpetually enhanced influx of
freshwater (from any source) or extreme CO2 forcing, the transient decrease in THC
overturning eventually recovers as time progresses in the model (Mikolajewicz and
Voss, 2000; Holland et al., 2000). In addition, when a dynamic sea ice module is included
in a coupled atmosphere–ocean model, Holland et al. (2000) report a reduction (rather
than an enlargement) in the variance of the THC overturning flowrate under the
doubled CO2 condition, down to 0.25 Sv2 (or only 7% of value simulated for present-
day forcing) from the high value of 3.6 Sv2 simulated under the present-day forcing
level.

Furthermore, Latif et al. (2000) reported a new stabilization mechanism that counters
previous expectations of a CO2-induced THC weakening. Latif et al.,’s state-of-the-art
coupled ocean–atmosphere GCM of the Max Planck Institut für Meteorologie at
Hamburg (MPI) resolves the tropical oceans at a meridional scale of 0.5º, rather than the
more typical scale of 2–6º, and produces no weakening of the THC when forced by
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increasing CO2. Latif et al. showed that anomalously high salinities in the tropical
Atlantic, produced by excess freshening through the remote forcing at the equatorial
Pacific, were advected poleward to the sinking region of the THC. The effect was
sufficient to compensate for the local increase in freshwater influx at North Atlantic.
Updated experiments for a similar CO2 forcing scenario by Gent (2001) and Sun and
Bleck (2001) also confirm the relative stability of the THC because of compensating
effects among thermal perturbation, changes in surface hydrology and salinity.

Therefore, sophisticated GCMs results are consistent with both a stable and unstable
North Atlantic THC under a future high CO2 radiative forcing scenario. Latif et al.
(2000) concluded that the response of THC to enhanced greenhouse warming is still an
open question, and Gent (2001) reiterated that estimating the response of the THC in the
twenty-first century, important as the question may be, is ‘a very demanding question
to ask of current state-of-the-art coupled climate models’.

III The incorrect fingerprint of CO2 forcing in GCMs

No GCM has successfully simulated the observed relative warming trend of the surface
layer compared with the low troposphere. All GCMs consistently predict that the
troposphere should warm faster than surface air when radiative forcing is enhanced by
CO2 (Bengtsson et al., 1999). Santer et al. (2001) confirmed that the wrong fingerprint is
observed compared with that expected from CO2 forcing on the atmosphere. GCMs
simulate trend differences of surface-minus-lower troposphere temperature significant-
ly smaller than the observed results for 51 out of 54 simulations examined, even for
best-effort attempts to account for trend biases introduced by effects of volcanoes and
El-Niño–Southern Oscillation (ENSO).

Some theoretical proposals expect a warming of the surface relative to the lower
troposphere because of nonlinear climate dynamics (Corti et al., 1999). That expectation
is because of the differential surface response with the pattern of Cold Ocean and Warm
Land (COWL) that becomes increasingly unimportant with distance from the surface
(see Soon et al., 2001, for additional explanation). Nevertheless, no GCM has incorpo-
rated such an idea into an operationally robust simulation of the climate system
response to greenhouse effects from added CO2. This incorrect forecast of the
fingerprint of carbon dioxide forcing on the surface and atmosphere temperature needs
resolution.

IV Summary

Climate models are now being used extensively to diagnose the causative, especially
anthropogenic, factors of observed climatic changes of the past few decades (Palmer,
2001; Stott et al., 2001; Thorne et al., 2002). These models are also used to make long-term
climate projections and climate risk assessments based on future anthropogenic forcing
scenarios (Saunders, 1999; Palmer, 2001; Houghton et al., 2001; Pittock, 2002; Schneider,
S.H., 2002). Many such exercises help to shape public policy recommendations
concerning future energy use and various ‘climate protection’ measures in order to
prevent ‘dangerous climate impacts’ (e.g., Schneider, S.H., 2002; O’Neill and
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