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Summary 
 
The processes of science and decision making share an important 

characteristic: success in each depends upon researchers or decision 
makers having some ability to anticipate the consequences of their 
actions. The predictive capacity of science holds great appeal for de-
cision makers who are grappling with complex and controversial 
environmental issues by promising to enhance their ability to deter-
mine a need for and outcomes of alternative decisions. As a result, 
the very process of science can be portrayed as a positive step to-
ward solving a policy problem. The convergence—and perhaps con-
fusion—of prediction in science and prediction for policy presents a 
suite of hidden dangers for the conduct of science and the challenge 
of effective decision making. This chapter, organized as a set of in-
ter-related analytical vignettes, seeks to expose some of these hidden 
dangers and to recommend strategies to overcome them in the proc-
ess of environmental decision making. In particular, this chapter will 
try to distill some of the lessons gleaned from research on modeling, 
prediction, and decision making in the earth and atmospheric sci-
ences for quantitative modeling of ecosystems. One clear implica-
tion is that conventional approaches to modeling and prediction can-
not simultaneously meet the needs of both science and decision 
making. For ecosystem science, there fortunately exists a body of 
experience in understanding, using, and producing predictions 
across the sciences on which to develop new understandings of the 
relationship of science and decision making to the potential benefit 
of both research and policy. 
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Introduction: Prediction in Science and Prediction for Decision 
 
The processes of science and decision making share an important character-

istic: success in each depends upon researchers or decision makers having some 
ability to anticipate the consequences of their actions. On the one hand, “[be-
ing] predictive of unknown facts is essential to the process of empirical testing 
of hypotheses, the most distinctive feature of the scientific enterprise” (Ayala 
1996). Of course, in science the “unknown facts” in question could lie in the 
past or the future. “Decision-making,” on the other hand, “is forward looking, 
formulating alternative courses of action extending into the future, and selecting 
among alternatives by expectations of how things will turn out” (Lasswell and 
Kaplan 1950).  

The predictive capacity of science holds great appeal for decision makers 
who are grappling with complex and controversial environmental issues be-
cause it promises to enhance their ability to determine a need for and outcomes 
of alternative decisions. As a result, the very process of science can be por-
trayed as a positive step toward solving a policy problem. The appeal of this 
“two birds with one stone” line of reasoning is obvious for decision makers 
who would place the onus of responsibility for problem solving onto the shoul-
ders of scientists. But this reasoning is also seductive for scientists who might 
wish to better justify public investments in research, as well as for a public that 
has come to expect solutions because of such investments (Sarewitz and Pielke 
1999). 

The convergence—and perhaps confusion—of prediction in science and 
prediction for policy presents a suite of hidden dangers for the conduct of sci-
ence and the challenge of effective decision making. This paper, organized as a 
set of interrelated analytical vignettes, seeks to expose some of these hidden 
dangers and to recommend strategies to overcome them in the process of envi-
ronmental decision making. In particular, this paper seeks to distill some of the 
lessons gleaned from research on modeling, prediction, and decision making in 
the earth and atmospheric sciences for quantitative modeling of ecosystems, the 
focus of Cary Conference IX. The background materials for the conference 
noted that “recent years have seen dramatic advancements in the computational 
power and mathematical tools available to modelers. Methodological advances 
in areas ranging from remote sensing to molecular techniques have significantly 
improved our ability to parameterize and validate models at a wide range of 
spatial scales. The body of traditional, mechanistic, empirical research is also 
growing phenomenally. Ecosystem science is ripe for major gains in the syn-
thetic and predictive power of its models, and that this comes at a time of grow-
ing need by society for quantitative models that can inform debate about critical 
environmental issues.” 

This background indicates that the community of ecosystem scientists is fol-
lowing other fields—particularly the atmospheric, oceanic, and earth sciences— 
down a path of using integrative environmental modeling to advance science 
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and to generate predictive knowledge putatively to inform decision making 
(Clark et al. 2001). This paper distills some of the most important lessons from 
the other fields that have journeyed down this perilous path, focusing on the use 
of models to produce predictions for decision. 

 
 

Modeling for What? 
 
Bankes (1993) defines two types of quantitative models, consolidative and 

exploratory, that are differentiated by their uses (cf. Morrison and Morgan 
1999). A consolidative model seeks to include all relevant facts into a single 
package and use the resulting system as a surrogate for the actual system. The 
canonical example is that of the controlled laboratory experiment. Other exam-
ples include weather forecasting and engineering design models. Such models 
are particularly relevant to decision making because the system being modeled 
can be treated as being closed. Oreskes et al. (1994) define a closed system as 
one “in which all the components of the system are established independently 
and are known to be correct” (Oreskes et al. 1994).1 The creation of such a 
model generally follows two phases: first, model construction and evaluation; 
and second, operational usage of a final product. Such models can be used to 
investigate diagnostics (i.e., What happened?), process (Why did it happen?), or 
prediction (What will happen?).  

An exploratory model—or what Bankes (1993) calls a “prosthesis for the in-
tellect”—is one in which all components of the system being modeled are not 
established independently or are not known to be correct. In such a case, the 
model allows for experiments with the model to investigate the consequences 
for modeled outcomes of various assumptions, hypotheses, and uncertainties 
associated with the creation of and inputs to the model. These experiments can 
contribute to at least three important functions (Bankes 1993). First, they can 
shed light on the existence of unexpected properties associated with the interac-
tion of basic assumptions and processes (e.g., complexity or surprises). Second, 
in cases where explanatory knowledge is lacking, exploratory models can facili-
tate hypothesis generation to stimulate further investigation. Third, the model 
can be used to identify limiting, worst-case, or special scenarios under various 
assumptions and uncertainty associated with the model experiment. Such ex-
periments can be motivated by observational data (e.g., econometric and hydro-
logic models), by scientific hypotheses (e.g., general circulation models of cli-
mate), or by a desire to understand the properties of the model or class of mod-
els independent of real-world data or hypotheses (e.g., Lovelock’s Daisyworld). 

Both consolidative and exploratory models have important roles to play in 
science and decision settings (Bankes 1993). However, the distinction between 
consolidative and exploratory modeling is fundamental but rarely made in prac-
tice or in interpretation of research results. Often, the distinction is implicitly 
(or explicitly) blurred to “kill two birds with one stone” in modeling and pre-
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dicting for science and policy (Sarewitz and Pielke 1999).2 Consider, for exam-
ple, the goal of the U.S. Global Change Research Program, from 1989: “To 
gain an adequate predictive understanding of the interactive physical, geologi-
cal, chemical, biological and social processes that regulate the total Earth Sys-
tem and, hence establish the scientific basis for national and international policy 
formulation and decisions” (CES 1989, 9).3  

And following from this conflation, most presentations by scientists and the 
media of the results of national and international climate assessments have 
sought to imbue the imprimatur of consolidative knowledge upon what are in-
herently exploratory exercises.4 Those who conflate the science and policy roles 
of prediction and modeling trade short-term political or public gain with a sub-
stantial risk of a more lasting loss of legitimacy and political effectiveness 
(Sarewitz et al. 2000).  

Thus, one of the most important lessons to be learned from the experiences 
of other scientific endeavors in which modeling has a potential role to play in 
research and decision is that one must be clear about the purposes for which the 
modeling is to be used and carefully examine any assumption that presumes 
isomorphism between the needs of science and the needs of decision making. 
 
 
Importance of Uncertainty 

 
Uncertainty, in the view of economist John Maynard Keynes, is the condi-

tion of all human life (Skidelsky 2000). Uncertainty means that more than one 
outcome is consistent with our expectations (Pielke 2001). Expectations are a 
result of judgment, are sometimes based on technical mistakes and interpretive 
errors, and are shaped by values and interests. As such, uncertainty is not some 
feature of the natural world waiting to be revealed but is instead a fundamental 
characteristic of how human perceptions and understandings shape expecta-
tions. Because uncertainty is a characteristic of every important decision, it is 
no surprise that society looks to science and technology to help clarify our ex-
pectations in ways that lead to desired outcomes. 

Because decision making is forward-looking, decision makers have tradi-
tionally supported research to quantify and even reduce uncertainties about the 
future. In many cases, particularly those associated with closed systems—or 
systems that can be treated as closed—understanding uncertainty is a straight-
forward technical exercise: probabilities in a card game are the canonical ex-
ample. Two real-world examples include error analysis in engineering and 
manufacturing, and the actuarial science that underlies many forms of insur-
ance.  However, in many other circumstances—particularly those associated 
with human action—systems are intrinsically open and cannot be treated as 
closed, meaning that understanding uncertainty is considerably more challeng-
ing. In recent decades, many scientists have taken on the challenge of under-
standing such open systems (e.g., global climate, genetic engineering, etc.), and 
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in the process of securing considerable public resources to pursue this chal-
lenge, scientists often explicitly promise to “understand and reduce uncertain-
ties” as input to important societal decisions. 

Conventional wisdom holds that uncertainty is best understood or reduced 
by advancing knowledge, an apparent restatement of the traditional definition 
of uncertainty as “incomplete knowledge” (Cullen and Small 2000). But in real-
ity, advances in knowledge can add significant uncertainty. For example, in 
1990 the Intergovernmental Panel on Climate Change (IPCC) projected a 1.5º 
to 4.5º C mean global temperature change for 2100 (IPCC 1990). In 2001, after 
tens of billions of dollars of investment in global-change research, the IPCC 
projected a 1.4º to 5.8º C temperature change for 2100 (IPCC 2001). Even as 
the IPCC has become more certain that temperature will increase, the uncer-
tainty associated with its projections has also increased. Why? Researchers 
have concluded that there are many more scenarios of possible population and 
energy use than originally assumed and have learned that the global ocean-
atmosphere-biosphere system is much more complex than was once thought 
(IPCC 2001). Ignorance is bliss because it is accompanied by a lack of uncer-
tainty. 

The promise of prediction is that the range of possible futures might be nar-
rowed in order to support (and indeed to some degree determine) decision mak-
ing. By way of contrast, in his Foundation series, science fiction writer Isaac 
Asimov introduced the notion of “psychohistory.” Asimov’s psychohistorians 
had the ability to predict the future with certainty based on complex mathemati-
cal models. We know that Asimov’s characters lie squarely in the realm of sci-
ence fiction—there can be no psychohistory such as this. The future, to some 
degree, will always be clouded. But, experience shows that this cloudiness is 
variable; we can predict some events with skill, and the promise of prediction 
can be realized. Understanding, using, and producing predictions depends upon 
understanding their uncertainty. What is it that leads to the uncertainty of earth 
and environmental predictions? What are the prospects of knowing the uncer-
tainty of specific predictions? 

A simple example might prove useful. Consider the poker game known as 
five-card draw. In a standard fifty-two-card deck, there are 2,598,960 possible 
five-card poker hands (Scarne 1986). Let us assume that in your hand you hold 
a pair. What are the chances that by exchanging the other three cards you will 
draw a third card to match the pair? In this instance you can know with great 
precision that in 71.428 . . . % of such situations you will fail to improve your 
hand. Thus, when you exchange three cards you are “uncertain” about the out-
come that will result, but you can quantify that uncertainty with great certainty. 

This sort of uncertainty is that associated with random processes, that is, one 
in which each element of a set (in this case a deck of cards) has an equal chance 
of occurring. Because we know the composition of the deck and the set of pos-
sible events (i.e., the relative value of dealt hands), it is possible to calculate 
precisely the uncertainty associated with future events. Scientists call this alea-
tory uncertainty, and it is studied using mathematical statistics (Hoffman and 
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Hammonds 1994, Stewart 2000). Such uncertainty, by definition, cannot be 
reduced. One can never divine what the next card will be, although one can 
precisely calculate what one's chances are of receiving a particular card. Simi-
larly, in predictions associated with the earth and environmental sciences there 
is also irreducible uncertainty associated with the nature of random processes.  

Let us take the poker example a step further. Assume that you find yourself 
playing cards with a less-than-honest dealer. This dealer is adding and remov-
ing cards from the deck so that the deck no longer has the standard fifty-two 
cards. The process is no longer stationary—it is changing over time. If you 
were to know the cards added and removed, that is, to have the ability to quan-
tify the changing composition of the deck, to quantify uncertainty, you would 
simply need to recalculate the probabilities based on the new deck of cards. 
However, if you were unaware that the deck was changing in its composition, 
then you could easily miscalculate the uncertainty associated with your options. 
Similarly, if you were aware that the deck was changing but were not privy to 
the exact changes, you would be unable to calculate precisely the uncertainty 
(but would know that the assumption of a standard fifty-two-card deck could be 
wrong). This sort of uncertainty is called epistemic uncertainty and is associated 
with incomplete knowledge of a phenomenon—and incomplete knowledge of 
the limits of one's knowledge (Hoffman and Hammonds 1994; Stewart 2000).  

Unlike aleatory uncertainty, epistemic uncertainty can be reduced in some 
cases through obtaining improved knowledge. In the case of the changing deck 
of cards, uncertainty could be reduced using several methods. For instance, one 
could carefully observe the outcomes of a large number of hands and record the 
actual frequencies with which particular hands occur. For instance, if four aces 
were added to the deck, one would expect to be able to observe the results in 
the form of more hands with ace combinations. Of course, the more subtle the 
change, the more difficult it is to detect.5 The more one understands about the 
card replacement process, the better understanding one can have about the asso-
ciated uncertainties. Unless one could discover the pattern underlying the 
change process (in effect “close” the system, Oreskes et al. 1994), then such 
theories would be subject to continuous revision as experience unfolds.  

But even though epistemic uncertainty can in principle be reduced, if one is 
dealing with open systems (as is almost always the case for environmental pre-
dictions), the level of uncertainty itself can never be known with absolute cer-
tainty. Seismologists assigned a probability of 90% to their 1988 prediction of 
the Parkfield earthquake, but the earthquake never occurred (Savage 1991, Nigg 
2000). Were the scientists simply confounded by the unlikely but statistically 
explicable one-out-of-ten chance of no earthquake? Or, was it because their 
probability calculation was simply wrong—that is, because the uncertainty as-
sociated with the prediction was in fact huge? Similarly, regardless of the so-
phistication of global climate models, many types of unpredictable events (vol-
canic eruptions that cool the atmosphere; new energy technologies that reduce 
carbon emissions) can render today’s climate predictions invalid and associated 
uncertainties meaningless (see, e.g., Keepin 1986).  
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A central theme that emerges from experience is that important decisions are 
often clouded by inherent uncertainty, and in many instances, efforts to reduce 
uncertainty can paradoxically have the opposite effect (Pielke 2001).6 Fre-
quently, research results in discovery that the vast complexities associated with 
phenomena that evolve slowly over long periods—like those associated with 
the integrated earth system—were in fact previously underestimated, thereby 
having the effect of expanding uncertainties (Sarewitz et al. 2000). In a decision 
setting, this can have the perverse effect of increasing political controversy 
rather than reducing it, leading to calls for even more research to reduce uncer-
tainties, while the problem goes unaddressed. No case illustrates this better than 
global climate change (Sarewitz and Pielke 2000). 

One of the most critical issues in using models to develop information for 
decision making is to understand uncertainty—its sources, and its potential re-
ducibility, as Weber (1999, 43, emphasis) observes: 

 
If uncertainty is measurable and controllable, then forecasting and 
information management systems serve a high value in reducing un-
certainty and in producing a stable environment for organizations. If 
uncertainty is not measurable and controllable, then forecasting and 
predictions have limited value and need to be understood in such 
context. In short, how we view and understand uncertainty will de-
termine how we make decisions. 

 
Thus, a lesson for any effort that seeks to model open systems to inform de-

cision making, particularly through prediction, is that it is imperative to under-
stand uncertainty, including its sources, potential irreducibility, and relevant 
experience, in the context of the decision making process. In some cases, such 
an effort may very well lead to the conclusion that decision making should turn 
to alternatives to prediction (e.g., examples would include robust strategies in-
sensitive to uncertainties such as trial and error; see e.g., Brunner 2000; Herrick 
and Sarewitz 2000). 

 
 

Communicating Uncertainty  
 
Experience shows that neither the scientific community nor decision makers 

have a good record at understanding uncertainty associated with predictions 
(Sarewitz et al. 2000). Such understanding is necessary because “the decision 
making process is best served when uncertainty is communicated as precisely 
as possible, but no more precisely than warranted” (Budescu and Wallsten 
1987, 78). But even in cases where uncertainty is well-understood, as is typi-
cally the case in weather forecasting, scientists face challenges in communicat-
ing the entirety of their knowledge of uncertainty to decision makers. Often, 
experts place blame for this lack of communication on the perceived lack of 
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public ability to understand probabilistic information. The resulting policy pre-
scription is for increased public education to increase scientific literacy (e.g., 
Augustine 1998; Rand 1998; Gibbs and Fox 1999). While improved scientific 
literacy has value, it is not the solution to improving communication of infor-
mation about uncertainty. 

Consider the following analogy. You wish to teach a friend how to play the 
game of tennis. You carefully and accurately describe the rules of tennis to your 
friend, but you speak in Latin to your English-speaking friend. When you get 
onto the court, your friend fails to observe the rules that you so carefully de-
scribed. Following the game, it would surely be inappropriate to criticize your 
friend as incapable of understanding tennis and futile to recommend additional 
tennis instruction in Latin. But, this is exactly the sort of dynamic observed in 
studies of public understanding of scientific uncertainties. For example, Mur-
phy et al. (1980) document that when weather forecasters call for, say, a 70% 
chance of rain, decision makers understood the probabilistic element of the 
forecast but did not know whether rain has a 70% chance for each point in the 
forecast area, or that 70% of the area would receive rain with a 100% probabil-
ity, and so on.7 Do you know? 

The importance of understanding and communicating uncertainties associ-
ated with a prediction product was aptly illustrated in the case of the 1997 
flooding of the Red River of the North (Pielke 1999). In February 1997, fore-
casters predicted that the river would see flooding greater than at any time in 
modern history. At Grand Forks, North Dakota, forecasters expected the spring 
flood to exceed the 1979 flood crest of 48.8 feet sometime in April. Forecasters 
issued a prediction that the flood would crest at 49 feet, hoping to convey the 
message that the flood would be the worst ever experienced. But the message 
sent by the forecasters was not the message received by decision makers in the 
community (cf. Fischoff 1994). 

Decision makers in the community misinterpreted both the event being fore-
cast and the uncertainty associated with the forecast. First, the prediction of 49 
feet, rather than conveying concern to the public, instead resulted in reduced 
concern. Locals interpreted the forecast in the context of the previous record 
1979 flood, which caused damage, but was not catastrophic. With the 1997 
crest expected only a few inches higher than the record set in 1979, many ex-
pressed relief rather than concern, that is, “We survived that one OK, how much 
worse can a few inches be?” Second, decision makers did not understand the 
uncertainty associated with the forecast. Flood forecasts are extremely uncer-
tain, especially forecasts of record floods for which there is no experience. 
Forecasters issued a quantitative forecast with a simple qualitative warning 
about uncertainty. Hence, many decision makers interpreted the forecast uncer-
tainty in their own terms: Some viewed the forecast as a ceiling, that is, “the 
flood will not exceed 49 feet.” Others viewed the forecast as uncertain and as-
sociated various uncertainties with the forecasts, ranging from 1 to 6 feet. The 
historical record showed that flood crest forecasts were, on average, off by 
about 10% of the forecast. 
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On April 22, 1997, at Grand Forks the Red River crested at 54 feet, inundat-
ing the communities of Grand Forks, North Dakota, and East Grand Forks, 
Minnesota, and causing up to $2 billion in damage (current dollars). In the af-
termath of the flood, local, state, and national officials pointed to inaccurate 
flood forecasts as a cause of the disaster. With hindsight, a more reasoned as-
sessment indicates that by any objective measure, the accuracy of the forecasts 
was not out of line with historical performance. Instead, decision makers and 
scientists failed to understand the meaning of the prediction both in terms of 
what was being forecast and the uncertainty associated with it. 

A significant literature exists on communication of uncertain information, 
some based on experience in the sciences (e.g., Dow and Cutter 1998; Baker 
2000; Glantz 2001) and much more (it seems) from the disciplines of commu-
nication, psychology, and sociology (Wallsten et al. 1986; Konold 1989; Hof-
frage et al. 2000). The implications of this literature range from the straightfor-
ward: “statistics expressed as natural frequencies improve the statistical think-
ing of experts and nonexperts alike” (Hoffrage et al. 2000) to the more chal-
lenging: “probability expressions are interpreted differently by speakers and 
listeners” (Fillenbaum et al. 1991). However, it is clear that the substantial re-
search on communication of uncertainty has not been well integrated with the 
research in the earth and environmental sciences that seeks to understand and 
describe uncertainties relevant to decision making. Understanding and commu-
nicating uncertainty by scientists and decision makers alike go hand-in-hand: 
both are necessary—but not sufficient—for information to contribute system-
atically to improved decisions.   
 
 
Understanding Predictability 

 
Consider again the poker example. With perfect knowledge of a card substi-

tution process engineered by a less-than-honest dealer, one would be able to 
quantify completely and accurately the associated uncertainties in future hands. 
However, this situation is quite different from most cases that we find in the 
real world of modeling and prediction in the environmental sciences. In the real 
world, systems are open and there are fundamental limits to predictability. And, 
perhaps surprisingly, many scientific efforts to divine the future proceed with-
out an adequate understanding of the limits to predictability. In addition to the 
aleatory and epistemic uncertainties discussed above, there are a number of 
other reasons for limits to predictability. Among these are sensitivity to initial 
conditions, complexity, and human agency.  

First, predictability is limited because knowledge of the future depends upon 
knowing the present, which can never be completely or accurately character-
ized. For example, weather forecasts depend upon knowing the present state of 
the atmosphere and then projecting forward its future behavior, based on physi-
cal relationships represented in computer models. A result of the dependence on 
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these “initial conditions” is that small changes in the initial conditions can sub-
sequently lead to large differences in outcomes. Knowledge of initial conditions 
is obtained with instruments. In weather prediction, these can include balloons, 
radar, satellites, and other instruments that are subject to measurement errors. 
But even without such measurement errors, the simple act of rounding off a 
decimal can lead to vastly different outcomes. Popularized as the “butterfly 
effect,” this is a fundamental characteristic of a chaotic system with limited 
predictability (Gleick 1987). Scientists have established 10–14 days as the limit 
of predictability for weather forecasts. In many other contexts the same limits 
hold but are not as well understood. Meteorologists run models repeatedly with 
small variations in input data (and sometimes in the model itself) to begin to 
understand the sensitivities of model output to initial conditions (e.g., Krishna-
murti et al. 1999). 

A second factor is that in the environmental sciences, phenomena of interest 
to policy makers are often incredibly complex and can result from intercon-
nected human and earth processes. Consider nuclear waste disposal (Metlay, 
2000). Predicting the performance of a waste facility 10,000 years into the fu-
ture depends upon knowing, among a multitude of other potentially relevant 
factors, what sorts of precipitation might be expected at the site. Precipitation is 
a function of global climate patterns. In addition, global climate patterns might 
be sensitive to human processes such as energy and land use. Energy and land 
use are functions of politics, policy, social changes, and so on. What at first 
seems a narrow scientific question rapidly spirals into great complexity. One 
characterization of the concept holds that “a complex system is one whose evo-
lution is very sensitive to initial conditions or to small perturbations, one in 
which the number of independent interacting components is large, or one in 
which there are multiple pathways by which the system can evolve” (White-
sides and Ismagilov 1999). Scientists are just beginning to understand the im-
plications of complexity for prediction (see Waldrop 1992). 

A third factor is the role of human agency. In situations where human deci-
sions are critical factors in the evolution of the future being predicted (that is to 
say, almost every issue of environmental policy), the aggregate record of pre-
diction is poor. Ascher (1981) argues that “unless forecasters are completely 
ignorant of the performance record, or are attracted solely by the promotional 
advantages of the scientific aura of modeling, they can only be attracted to 
benefits not yet realized.” The poor performance of predictions of societal out-
comes is consistent across diverse areas that include energy demand (Keepin 
1986), energy supplies (Gautier 2000), population (Cohen 1996), elections 
(Mnookin 2001), corporate financial performance (Dreman and Berry 1994), 
macro-economics (CBO 1999), and medicine (Fox et al. 1999). To the extent 
that modeled outcomes depend upon some degree of accuracy in predicting 
factors such as these, predictability clearly will be limited. 

And yet, effective decision making cannot occur without some way to an-
ticipate the consequences of alternative courses of action. There is a consider-
able range of cases in which prediction and modeling contributed to effective 
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decisions. The practice of insurance and engineering would not be possible 
without predictive ability. And more relevant to present purposes, the appar-
ently successful response to stratospheric ozone depletion would not have been 
possible without predictive and diagnostic modeling (Pielke and Betsill 1997). 
But understanding (and indeed creating) those situations where prediction and 
modeling serve effective decision making is not straightforward, if simply be-
cause questions about the roles of models and prediction in decision making are 
rarely asked, much less answered.   

 
 

What Is a “Good” Model? 
 
This section focuses on models as a means to produce predictions for deci-

sion making, as well as a social and scientific mechanism that fosters integra-
tion of knowledge. The “goodness” of predictions produced from models can 
be understood from two distinct perspectives: product and process.  

 
Prediction as Product 

The first and most common perspective is to view models simply as genera-
tors of an information product. Often, when a model is applied to decision prob-
lems, it is used to produce a prediction, that is, a “set of probabilities associated 
with a set of future events” (Fischoff 1994). To understand a prediction, one 
must understand the specific definition of the predicted event (or events), as 
well as the expected likelihood of the event’s (or events’) occurrence. From this 
perspective, the goal of modeling is simply to develop “good” predictions 
(Pielke et al. 1999). Three important considerations in the production of “good” 
predictions are accuracy, sophistication, and experience. 

 
Accuracy. Accuracy is important because “on balance, accurate forecasts are 

more likely than inaccurate forecasts to improve the rationality of decision 
making” (Ascher 1979, 6). With a few exceptions, once a forecast is produced 
and used in decision making, few researchers or decision makers ever look back 
to assess its skill (Sarewitz et al. 2000). Measuring the skill of a prediction is 
not as straightforward as it might seem. Consider the case of early tornado fore-
casts. In the 1880s, a weather forecaster began issuing daily tornado forecasts in 
which he would predict for the day “tornado” or “no tornado.” After a period of 
issuing forecasts, the forecaster found his forecasts to be 96.6% correct. But 
others who looked at the forecaster’s performance discovered that simply issu-
ing a standing forecast of “no tornadoes” would result in an accuracy rate of 
98.2%! This finding suggested that, in spite of the high degree of correct fore-
casts, the forecaster was providing predictions with little skill—defined as the 
improvement of a forecast over some naïve standard—and which could result in 
costs rather than benefits. Simply comparing a prediction with actual events 
does not provide enough information with which to evaluate its performance. A 
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more sophisticated approach is needed. Thus, predictions should be evaluated 
in terms of their “skill,” defined as the improvement provided by the prediction 
over a naïve forecast, such as that that would be used in the absence of the pre-
diction.8  
 

Sophistication. Decision makers sometimes are led to believe that sophistica-
tion of a prediction methodology lends itself to greater predictive skill, that is, 
given the complexity of the world a complex methodology should perform bet-
ter. In reality, the situation is not so clear-cut. An evaluation of the performance 
of complex models has shown that “methodological sophistication contributes 
very little to the accuracy of forecasts” (Ascher 1981; see also Keepin 1986). A 
lesson for decision makers is that sophisticated prediction methodologies (or by 
extension the resources devoted to development of such methodologies) do not 
necessarily guarantee predictive, much less decision making, successes. Be-
cause complex models often require significant resources (computation, hu-
mans, etc.), a trade-off invariably results between producing one or a few reali-
zations of a highly complex model and many runs of a simpler, less intensive 
version of the model. For instance, the U.S. National Assessment of Climate 
Change used only two scenarios of future climate due to computation limita-
tions (NACC 2000). For many decision makers, having an ability to place mod-
eled output into the context of the entire “model-output space” would have been 
more useful than the two products that were produced largely without context. 
This is an example of confusion between consolidative and exploratory model-
ing.  

 
Experience. In weather forecasts, society has the best understanding of pre-

diction as a product. Consider that in the United States the National Weather 
Service issues more than 10 million predictions every year to hundreds of mil-
lions of users. This provides a considerable basis of experience on which users 
can learn, through trial and error, to understand the meaning of the prediction 
products that they receive. Of course, room for confusion exists. People can fail 
to understand predictions for record events for which there is no experience, as 
in the Red River case, or even a routine event being forecast (e.g., 70% chance 
of rain). But experience is essential for effective decision making, and most 
decision makers have little experience using models or their products. Erev et 
al. (1993) provide a useful analogy: 

 
Consider professional golfers who play as if they combine informa-
tion concerning distance and direction of the target, the weight of 
the ball, and the speed and direction of the wind. Now assume that 
we ask them to play in an artificial setting in which all the informa-
tion they naturally combine in the field is reduced to numbers. It 
seems safe to say that the numerical representation of the informa-
tion will not improve the golfer’s performance. The more similar are 
the artificial conditions we create to the conditions with which the 
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golfers are familiar, the better will be their performance. One can as-
sume that decision making expertise, like golf expertise, is improved 
by experience, but not always generalized to new conditions. 
 

The importance of experience does not necessarily limit the usefulness of 
models and their products in decision making, but it does underscore the impor-
tance of the decision context as a critical factor in using models (Stewart et al. 
1997). 

A range of experience illustrates that misunderstandings or misuse of predic-
tion products have presented obstacles to decision makers’ efforts to effectively 
use predictions. Considering the following: 

 
• Global climate change (Rayner 2000). Debate has raged for more 

than a decade about the policy implications of possible future 
human-caused changes in climate. This debate has been about 
“global warming” expressed in terms of a single global average 
temperature. But global average temperature has no “real-world” 
meaning, and thus policy advocates have sought to interpret that 
“event” in different ways, ranging from pending global catastro-
phe to benign (and perhaps beneficial) change. The issue of un-
certainty compounds the issue. As a result, predictive science has 
been selectively used and misused to justify and advance the ex-
isting objectives of participants in the process (Sarewitz and 
Pielke 2000). 

 
• Asteroid impacts (Chapman 2000). In recent years, scientists 

have increased their ability to observe asteroids and comets that 
potentially threaten the earth. In this case, the “event” is clear 
enough—possible extinction of life on earth if a large asteroid 
slams into the earth—and its prediction seemingly straightfor-
ward, uncomplicated by human agency. But scientific overreac-
tion to the discovery of 1997 XF11 and the associated prediction 
that it could strike the earth on October 26, 2028, illustrate that 
understandings of uncertainty are critical (Chapman 2000). In 
this case, hype might have damaged future credibility of scien-
tists who study this threat. 

 
These examples and others illustrate the difficulties associated with under-

standing prediction as a product (Sarewitz et al. 2000). At the same time, these 
cases also demonstrate that improving the use of prediction involves more than 
simply developing “better” predictions, whether more precise, for example, a 
forecast of a 49.1652 flood crest at East Grand Forks; more accurate, for exam-
ple, a forecast of a 51 foot crest; or more robust, for example, a probabilistic 
distribution of various forecast crest levels. While better predictions are in 
many cases more desirable, better decisions require attention to the broader 
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prediction process. From this standpoint, better predictions may be neither nec-
essary nor sufficient for improved decision making and, hence, desired out-
comes. For better decisions, it is necessary to understand prediction as a prod-
uct in the context of a process. 

 
Prediction as Process 

A second perspective is to view modeling as part of a broader prediction 
process. Included are the participants, perspectives, institutions, values, re-
sources, and other factors that together determine policies for the prediction 
enterprise, as well as how the prediction enterprise contributes to public de-
mands for action or tools with respect to the issues that they bring to the atten-
tion of decision makers. From this perspective, the goal of the prediction enter-
prise is good decisions. Modeling, due to its (potentially) integrative nature, is 
an important element of the prediction process.  

The successful use of predictions depends more upon a healthy process than 
just on “good” information (Sarewitz et al. 2000). Weather forecasts have de-
monstrably shown value not because they are by any means “perfect,” but be-
cause users of those predictions have successfully incorporated them into their 
decision routines. The prediction process can be thought of as three parallel 
subprocesses (Sarewitz et al. 2000): 

 
Research Process includes the fundamental science, observations, etc. 

as well as forecasters’ judgments and the organiza-
tional structure which go into the production of pre-
dictions for decision makers. 

 
Communication Process includes both the sending and receiving of informa-

tion; a classic model of communication is: who, says 
what, to whom, how, and with what effect. 

 
Choice Process includes the incorporation of predictive information 

in decision making. Of course, decisions are typi-
cally contingent upon many factors other than pre-
dictions. 

 
Often, some persons mistakenly ascribe a linear relation to the processes. In-

stead, they are better thought of as components of a broader prediction process, 
with each of the subprocesses taking place in parallel and with significant feed-
back and interrelations between them. 

Peter Drucker has written an eloquent description of the modern organiza-
tion that applies equally well to the prediction process. “Because the organiza-
tion is composed of specialists, each with his or her own narrow knowledge 
area, its mission must be crystal clear . . . otherwise its members become con-
fused. They will follow their specialty rather than applying it to the common 

 



 Prediction for Decision 127 

task. They will each define ‘results’ in terms of that specialty, imposing their 
own values on the organization” (Drucker 1993, 54). 

Drucker continues with an apt metaphor. “The prototype of the modern or-
ganization is the symphony orchestra. Each of 250 musicians in the orchestra is 
a specialist, and a high-grade one. Yet, by itself, the tuba doesn’t make music; 
only the orchestra can do that. The orchestra performs only because all 250 
musicians have the same score. They all subordinate their specialty to a com-
mon task” (Drucker 1993, 55). 

In the process of modeling and prediction in support of decision making, 
success according to the criteria of any subset of the three subprocesses does 
not necessarily result in benefits to society. Consider the following examples. 

 
• The case of the Red River floods presented earlier illustrates that 

a technically skillful forecast that is miscommunicated or mis-
used can actually result in costs rather than benefits.  The overall 
prediction process broke down in several places. No one in the 
research process fully understood the uncertainty associated with 
the forecast; hence little attention was paid to communication of 
uncertainty to decision makers. As a result, poor decisions were 
made and people suffered, probably unnecessarily. Given that 
Grand Forks will to some degree always depend upon flood pre-
dictions, the situation might be improved in the future by includ-
ing local decision makers in the research process in order to de-
velop more useful products (see Pielke 1999). 

 
• In the case of earthquake prediction, a focus on developing skill-

ful predictions of earthquakes in the Parkfield region of Califor-
nia brought together seismologists with local officials and emer-
gency managers (Nigg 2000). A result was better communication 
among these groups and overall improved preparation for future 
earthquakes. In this case, even though the predictions themselves 
could not be shown to be skillful, the overall process worked be-
cause it identified alternatives to prediction that have led to deci-
sions that are expected to reduce the impacts of future earth-
quakes in this region, such as improving building codes and en-
forcement, insurance practices, and engineering designs. 

 
• The case of global climate change may be in the early stages of 

what was documented in the case of earthquakes (Rayner 2000). 
Policy making focused on prediction has run up against numer-
ous political and technical obstacles. Meanwhile alternatives to 
prediction have become increasingly visible. The prediction 
process can be judged successful if the goal of climate policy—to 
reduce the impacts of future climate changes on environment and 
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society—is addressed, independent of whether century-scale cli-
mate forecasts prove to be accurate (Sarewitz and Pielke 2000).  

 
• The case of nuclear waste disposal has also evolved from one in 

which decision making focused first on developing skillful pre-
dictions to one in which decision making focused instead on ac-
tions that would be robust under various alternative futures (Met-
lay 2000). In this case, the policy problem of storing nuclear 
waste for a very long time (and associated uncertainties) was ad-
dressed via decision making by selecting an engineering design 
that was robust to a very wide range of uncertainties and not by 
selecting a design based on a specific prediction. 

 
As Robinson (1982, 249) observes, “by basing present decisions on the ap-

parent uncovering of future events, an appearance of inevitability is created that 
de-emphasizes the importance of present choice and further lessens the prob-
ability of developing creative policy in response to present problems . . . [pre-
dictions] do not reveal the future but justify the subsequent creation of that fu-
ture.” The lesson for decision makers is that one is in most cases more likely to 
reduce uncertainties about the future through decision making rather than 
through prediction. 

The criteria for evaluating the “goodness” of a model are thus directly re-
lated to the purposes for which a model is to be used. A consolidative model 
will most likely be evaluated based on the accuracy of its output, whereas an 
exploratory model could easily succeed even if its results are highly inaccurate 
(Bankes 1993). Similarly, a model designed to advance understanding should 
be evaluated by a different set of criteria than a model designed to provide reli-
able products useful in decision making.  For society to realize the benefits of 
the resources invested in the science and technology of prediction, the entire 
process must function in a healthy manner, just like the sections of Drucker’s 
orchestra must perform together to make music. Each subprocess of the broader 
prediction process must be considered in the context of the other subprocesses; 
they cannot be considered in isolation. 

 
 

Conclusion: For Better Decisions, Question Predictions 
 
The analytical vignettes presented in this paper begin to highlight some of 

the shared characteristics of healthy decision processes for the use of model 
products, particularly predictions. One characteristic is the critical importance 
of decision makers who have experience with the phenomena being predicted, 
as well as experience with the predictions themselves. The less frequent, less 
observable, less spatially discrete, more gradual, more distantly future, and 
more severe a predicted phenomenon, the more difficult it is to accumulate di-
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rect experience. Where direct societal experience is sparse or lacking, other 
sources of societal understanding must be developed or the prediction process 
will not function as effectively. Science alone and prediction in particular do 
not create this understanding. 

More broadly, what is necessary above all is an institutional structure that 
brings together throughout the entire prediction process scientists with those 
who solicit and use predictions, so that each knows the needs and capabilities of 
the others. It is crucial that this process be open, participatory, and conducive to 
mutual respect. Efforts to shield expert research and decision making from pub-
lic scrutiny and accountability invariably backfire, fueling distrust and counter-
productive decisions. 

While efforts to predict natural phenomena have become an important aspect 
of the earth and environmental sciences, the value of such efforts, as judged 
especially by their capacity to improve decision making and achieve policy 
goals, has been questioned by a number of constructive critics. The relationship 
between prediction and policy making is not straightforward for many reasons, 
among them: 

 
• Accurate prediction of phenomena may not be necessary to re-

spond effectively to political or socioeconomic problems created 
by the phenomena (for example, see Landsea et al. 1999). 

 
• Phenomena or processes of direct concern to policy makers may 

not be easily predictable. Likewise, predictive research may re-
flect discipline-specific scientific perspectives that do not provide 
“answers” to policy problems, which are complex mixtures of 
facts and values and which are perceived differently by different 
policy makers (for example, see Herrick and Jamieson 1995). 

 
• Necessary political action may be deferred in anticipation of pre-

dictive information that is not forthcoming in a time frame com-
patible with such action. Similarly, policy action may be delayed 
when scientific uncertainties associated with predictions become 
politically charged (in the issue of global climate change, for ex-
ample; see Rayner and Malone 1998). 

 
• Predictive information also may be subject to manipulation and 

misuse, either because the limitations and uncertainties associated 
with predictive models are not readily apparent, or because the 
models are applied in a climate of political controversy and high 
economic stakes.  

 
• Emphasis on predictive products moves both financial and intel-

lectual resources away from other types of research that might 
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better help to guide decision making (for example, incremental or 
adaptive approaches to environmental management that require 
monitoring and assessment instead of prediction; see Lee 1993). 

 
These considerations suggest that the usefulness of scientific prediction for 

policy making and the resolution of societal problems depends on relationships 
among several variables, such as the timescales under consideration, the scien-
tific complexity of the phenomena being predicted, the political and economic 
context of the problem, and the availability of alternative scientific and political 
approaches to the problem.  

In light of the likelihood of complex interplay among these variables, deci-
sion makers and scientists would benefit from criteria that would allow them to 
better judge the potential value of scientific prediction and predictive modeling 
for different types of political and social problems related to earth processes and 
the environment. Pielke et al. (1999) provide the following six guidelines for 
the effective use of prediction in decision making: 

 
• Predictions must be generated primarily with the needs of the 

user in mind. And that user could be another scientist. For stake-
holders to participate usefully in this process, they must work 
closely and persistently with the producers of predictions to 
communicate their needs and problems. 

 
• Uncertainties must be clearly understood and articulated by 

scientists, so that users have a chance to understand their implica-
tions. Failure to understand uncertainties has contributed to poor 
decisions that then undermined relations among scientists and de-
cision makers. But merely understanding the uncertainties does 
not mean that the predictions will be useful. If policy makers 
truly understood the uncertainties associated with predictions of, 
for example, global climate change, they might decide that strate-
gies for action should not depend on predictions (Rayner and 
Malone 1998). 

 
• Experience is a critically important factor in how decision makers 

understand and use predictions.  
 

• Although experience is important and cannot be replaced, the 
prediction process can be facilitated in other ways, for example, 
by fully considering alternative approaches to prediction, such as 
robust policies insensitive to uncertainties. Indeed, alternatives to 
prediction must be evaluated as a part of the prediction process.  
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• To ensure an open prediction process, stakeholders must question 
predictions. For this questioning to be effective, predictions 
should be as transparent as possible to the user. In particular, as-
sumptions, model limitations, and weaknesses in input data 
should be forthrightly discussed. Even so, lack of experience 
means that many types of predictions will never be well under-
stood by decision makers.  

 
• Last, predictions themselves are events that cause impacts on so-

ciety. The prediction process must include mechanisms for the 
various stakeholders to fully consider and plan what to do after a 
prediction is made. 

 
When the prediction process is fostered by effective, participatory institu-

tions, and when a healthy decision environment emerges from these institu-
tions, the products of predictive science may become even less important. 
Earthquake prediction was once a policy priority; now it is considered techni-
cally infeasible, at least in the near future. But in California the close, institu-
tionalized communication among scientists, engineers, state and local officials, 
and the private sector has led to considerable advances in earthquake prepared-
ness and a much-decreased dependence on prediction. On the other hand, in the 
absence of an integrated and open decision environment, the scientific merit of 
predictions can be rendered politically irrelevant, as has been seen with nuclear 
waste disposal and acid rain. In short, if no adequate decision environment ex-
ists for dealing with an event or situation, a scientifically successful prediction 
may be no more useful than an unsuccessful one. 

These recommendations fly in the face of much current practice where, typi-
cally, policy makers recognize a problem and decide to provide resources to 
science to reduce uncertainty or produce predictions. Scientists then go away 
and do research to predict natural behavior associated with the problem, and 
predictions are finally delivered to decision makers with the expectation that 
they will be both useful and well used. This sequence, which isolates prediction 
research but makes policy dependent on it, rarely functions well in practice. 

Yet, once we have recognized the existence of a prediction enterprise, it be-
comes clear that prediction is more than a product of science. Rather, it is a 
complex process, one that includes all the interactions and feedbacks among 
participants, perspectives, institutions, values, interests, resources, decisions, 
and other factors that constitute the prediction enterprise. From this perspective, 
the goal of the prediction enterprise is good decisions, as evaluated by criteria 
of public benefit. The value of predictions for environmental decision making 
therefore emerges from the complex dynamics of the prediction process, and 
not simply from the technical efforts that generate the prediction product 
(which are themselves an integral part of the prediction process). All the same, 
it is the expectation of a useable prediction product that justifies the existence 
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of the prediction enterprise. This expectation turns out to be extremely difficult 
to fulfill. 

This chapter has presented only a few of the many considerations that must 
be understood if scientific modeling and prediction are indeed to fulfill public 
expectations of the contributions of science in addressing environmental policy 
problems. There is considerable need for debate and discussion, supported by 
rigorous knowledge, on the proper role of modeling and prediction in decision 
making, rather than a simple assumption of what that role should be. However, 
one clear implication of the considerations presented in this paper is that the 
belief that modeling and prediction can simultaneously meet the needs of both 
science and decision is untenable as currently practiced. For ecosystem science, 
there exists a body of experience in understanding, using, and producing predic-
tions across the sciences on which to build, to the potential benefit of both re-
search and policy. 
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Notes: 
 
1 Oreskes (pers. comm.) argues that no model of a natural system can ever be fully specified, and 
therefore cannot in principle meet the definition of a consolidative model. 
2 A consolidative model can be properly used in exploratory fashion, but the real threat to decision 
making occurs when the opposite occurs.  For an extended treatment of such models see Bankes 
(1993). 
3 On the USGCRP, see Pielke 2000a and 2000b. 
4 On the interpretation of climate model results, see Trenberth 1997, Edwards 1999, IPCC 2001. On 
the media’s presentation of climate research results, see Henderson-Sellers 1998. On their role in 
decision, see Sarewitz and Pielke 2000 and Sluijs et al. 1998. 
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5 In a very similar fashion, some studies of global climate change use such a method to assess 
whether the storms, temperature, precipitation, etc., of one period differ significantly from that of 
another period (e.g., Wunsch 1999). 
6 A related consideration is that attempts to eliminate uncertainty by changing thresholds for deci-
sion (e.g., changing the wind-speed criteria for hurricane evacuation) invariably result in trade-offs 
between false alarms and misses (i.e., type I and type II errors), with associated societal costs.  See 
Stewart 2000. 
7 There is a considerable literature on the use of weather forecasts that supports this line of argu-
ment.  See in particular the work of Murphy (e.g., Murphy et al. 1980) and Baker (e.g., Baker 
2000). 
8 The term “skill” is jargon; however the notion of evaluating predictions against a naïve baseline is 
fundamental to the evaluation of weather forecasts and financial forecasts (such as mutual fund 
performance). For forecasts that are probabilistic, rather than categorical, the evaluation of skill can 
be somewhat more complicated, but adheres to the same principles. See Murphy 1997 for a techni-
cal discussion of the many dimensions of predictive skill. There are other dimensions of predictive 
“goodness” that are central to evaluation of its role in decision making—including comprehensibil-
ity, persuasiveness, usefulness, authoritativeness, provocative ness, importance, value, etc., for 
discussion, see Ascher 1979, Armstrong 1999 and Sarewitz et al. 2000. 
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