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With about 200 million people living within coastal flood-
plains, and with two million square kilometres of land and 
one trillion dollars worth of assets lying less than 1 m above 

current sea level, sea-level rise is one of the major socio-economic 
hazards associated with global warming1. The expected rate is, how-
ever, extremely uncertain. Although the latest Intergovernmental 
Panel on Climate Change (IPCC) report2 suggests a range of 
0.18–0.59 m of sea-level rise between 1980–1999 and 2090–2099, 
it emphasizes that the contribution from changes in ice dynamics 
is highly uncertain, and provides three “illustrative” scenarios sug-
gesting a possible addition of up to 0.17 m from this source. Since 
then, several studies3,4 have suggested that a rise larger than 1 m can-
not be ruled out. Sea-level rates of this magnitude (metres per cen-
tury) are not uncommon in reconstructions of past sea-level change 
using geological evidence, and it has recently been suggested that 
similar rates occurred during the previous interglacial warm period 
120,000 years ago5,6 when the volume of land ice was similar to that 
at present.

A ‘headline’ figure of 1 m during the twenty-first century repre-
sents only the global average sea-level rise. Many different physical 
processes contribute to sea-level change (see Box 1) and none of 
these produce a spatially uniform signal. Indeed, one of the few 
statements that can be made with certainty is that future sea-level 
change will not be the same everywhere. Thus, the development 
of regional and local estimates of future sea-level rise — required 
for effective risk assessment — is one of the primary challenges 
for the coming years2. Prediction relies on models, and the verac-
ity of model output is based on verification against observations. 
However, interpretation of these observations requires great care in 
light of the large spatial and temporal variability in sea-level change. 
In this article we summarize recent progress in understanding the 
variability in a suite of sea-level related observations at timescales 
ranging from decades to millennia. We conclude with an estimate 
of our current ability to predict future sea-level rise, and highlight 
outstanding problems to address in the coming years to achieve 
greater accuracy and confidence in such predictions.

the satellite era
The most comprehensive sea-level observations are the most 
recent ones. Since 1992, precise satellite altimeter missions have 
provided near-global maps of absolute sea level (Box 1) every 
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ten days, permitting the sea-level trend to be determined for the 
majority of the world ocean (Fig. 1).The measurements highlight 
the non-uniform nature of the change over more than 14 years. 
Although the average is around 3 mm yr-1, there are regions showing 
trends of over 10 mm yr-1 and larger areas (notably the northeastern 
Pacific) where sea level has fallen over this period. The small spatial 
scale of some of these differences draws attention to the issue of 
spatial sampling.

Recently, two observing systems that complement the altimetric 
data have been put into operation. The first — the Argo network — is 
a series of autonomous floats that sink and ascend, monitoring tem-
perature and salinity in the top 1–2 km of the ocean. Since 2000, 
the Argo network has increased to more than 3,000 floats. The 
second — the Gravity Recovery and Climate Experiment (GRACE) 
satellite mission, launched in 2002 — measures the global gravity 
field every month. Resulting maps can be used to monitor month-
to-month gravity changes, which are dominated by the motion of 
water around the Earth. Together, the Argo and GRACE measure-
ment systems can, in principle, separate out the contributions to 
sea-level change from changes in ocean-water density and changes 
in ocean mass. With the GRACE system, it is also possible to deter-
mine the transfer of land-based water to the ocean.

Initial comparison of all three data sets7 highlighted an 
inconsistency due to apparent ocean cooling8. This has since been 
identified as a result of the differing biases in the instruments 
observing ocean temperature9–12, while geodetic constraints from 
observations of the Earth’s dynamic oblateness confirmed that 
this apparent cooling was not being offset by a large increase in 
melting land ice13. After applying corrections for these biases, 
several studies14–16 have shown greatly improved consistency, in 
one case14 finding a tightly closed sea-level budget for interannual 
and seasonal cycles, but a significant imbalance of over 3 mm yr-1 
in the trend. In a second case15, a smaller net imbalance of about 
1 mm yr-1 was found (this is within the estimated error bars). In a 
third study16 GRACE data were used in two different ways: using 
a larger geodetic correction over the oceans than in other studies; 
and using it only to estimate Antarctic and Greenland mass loss, 
combining with other datasets to estimate the total mass entering 
the ocean. These two methods both result in a balance to within 
a small fraction of 1 mm yr-1. However, in these three studies, 
there are differences of about 1 mm yr-1 in the results obtained from 
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each observing system (altimetry, Argo and GRACE), suggesting 
that this is the true error bound on trend estimates for these short 
(4 yr) time series. Variations may be partly a result of the slightly 
different time spans chosen and the dominant role of interannual 
variability over periods of only a few years, but there are also issues 
with each of the observing systems.

Problems with calibration of the temperature measurements 
were noted above, but a significant part of the imbalance arises from 
the incomplete temperature sampling of the ocean, particularly the 
Southern Ocean14, which may be insufficient before 2004 (refs 15 
and 16). The development of innovative ways to reduce sampling 
bias17 is important. The GRACE mass estimates have a number of 
complications that contribute to their uncertainty. Because of the 
small signal over the oceans, compared with those over land, the 
analysis must reduce both the sampling of the nearby land signal 

along the coasts18 and the presence of correlated errors in the 
GRACE solutions19,20. In addition, the GRACE mission is insensi-
tive to geocentre motion, that is, the motion of the Earth’s centre of 
figure relative to the centre of mass of the whole Earth (including 
cryosphere, hydrosphere and atmosphere). Ignoring this contribu-
tion can introduce an underestimate of up to 30% in sea-level rise 
caused by Greenland ice melting18. Estimates of geocentre motion 
derived from GRACE products or satellite laser ranging can be used 
in these analyses, but the accuracy of the trend in these estimates is 
difficult to obtain21. Finally, vertical motion of the ocean floor — due 
to glacial isostatic adjustment (the isostatic response of the solid 
Earth to past ice–ocean mass exchange) — makes a particularly large 
contribution to the measured gravity changes, with values used in 
recent analyses7,14,15 ranging from -1 to -2 mm yr-1 (water-equivalent 
mass change).

Sea level is measured in one of two ways: relative to the ocean floor 
(known as ‘relative sea level’) or relative to the Earth’s centre of mass 
(known as ‘absolute sea level’). Satellite altimetry is the only method 
that provides a measure of absolute sea level. Both relative and abso-
lute sea level are affected by a wide variety of processes (panel a). 
Note that absolute sea level is affected indirectly by deformation of 
the solid Earth owing to the corresponding changes to the gravity 
field and volume of the global ocean basin. All of the processes 
depicted in a result in a spatially variable sea-level response.

Two climate-related processes that will have central roles in 
governing sea-level changes over the coming decades to centuries 
are land-ice melting (mass contribution; b) and ocean-water 
density change owing to temperature and salinity changes (steric 
contribution; c). The spatial variability associated with these 
processes is depicted in b and c.

It is generally assumed that when land ice melts, the associated 
sea-level rise is globally uniform and proportional to the volume 

of ice loss. For example, it is often stated that the Greenland 
ice sheet holds about 7 m of global sea-level rise. In reality, the 
situation is more complex because of the isostatic deforma-
tion of the solid Earth along with gravitational and rotational 
changes driven by the ice–ocean mass exchange27,85,98. Panel b 
shows model predictions of the change in global sea level if the 
Greenland (top) or West Antarctic (bottom) ice sheets were to lose 
mass at 1 mm yr-1 (10 cm per century) of global mean sea-level 
equivalent. The predicted response departs significantly from the 
mean with a reduced rise and even fall in areas close to the ablat-
ing ice mass and an amplified rise in areas far removed from the 
melt source99.

Ocean temperature and salinity changes have also been 
regionally variable in the past, and estimates of the resulting sea-
level change reflect this variability. Panel c shows the mean rates 
of sea-level change over the period 1950–2003 estimated from 
observations of ocean temperature (taken from ref. 100).

Box 1 | Processes affecting sea level.
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Altimetry is not a perfect measurement system either. 
Although comparison with tide gauges shows that an accuracy of 
0.4 mm yr-1 should be attainable22,23, two of the above analyses14,15 
give estimates of 3.6 and 2.4 mm yr-1 respectively (both corrected 
for glacial isostatic adjustment in the same way). Much of this dif-
ference seems to result from the fact that the two four-year periods 
of analysis are offset by six months, but it should not be forgotten 
that there is a continual need to check for errors in the various 
corrections applied to altimetric data.

Since the most recent IPCC report, there have been two 
main advances: the correction of biases in ocean temperature 
observations9,11, which greatly reduces the apparent cooling 
seen over the last few years10,12, as well as reducing the appar-
ent interdecadal variability in steric sea level24; and the ability 
to use three observing systems (altimetry, GRACE and Argo) to 
check the degree of closure of the mass flux and steric budget. 
However, given the short (4 yr) and differing time periods for the 
calculation of trends, it is not surprising that results vary between 
different studies, with central estimates of 2.4 to 3.6 mm yr-1 for 
the mean rate of absolute sea-level rise15,16, -0.5 to 0.8 mm yr-1 for 
the steric component14,15 and 2.4 to 3.6 mm yr-1 for the mass flux 
component14,15.

Despite these uncertainties, progress is rapid and it is becoming 
clear that the combination of observing systems is very powerful. 
But the greatest dividends will come with longer time series, as 
interannual variability becomes less dominant and it becomes 
possible to isolate the causes of decadal and regional variability.

the twentieth century
The large spatial variability in sea-level change, as well as honest 
assessment of error sources, must also be considered carefully 
when interpreting older measurements. These necessarily rely 
on a highly incomplete observing system: the global tide-gauge 
network25. From these records (Fig. 2) it is clear that spatial varia-
tion is still an important contributor to the measured changes even 
at the century timescale. Various processes (such as, atmosphere-
driven and internal ocean dynamical modes, and unmodelled 
vertical land movement) probably contribute to this variability. In 
some cases, these processes are likely to produce highly localized 
signals, bringing into question how representative the tide-gauge 
record is of ocean-basin-scale averages. More work is needed to 
resolve the roles of these various processes.

For the globally integrated budget, the new temperature 
calibrations cited above improve the balance for 1961–2003 

(ref. 24), but complete closure contains many uncertainties, 
including the human influence on land-based water storage26, 
and relies on a significant (0.2 mm yr-1) unmeasured deep-ocean 
temperature component24. It may never be possible to determine 
the steric contribution to twentieth century sea-level change to 
the same accuracy as can be achieved with the measurement sys-
tem now in place, but it remains important to understand better 
the magnitudes and error budgets of the various processes that 
contributed to sea-level change during this period.

Few direct observations of ice-mass flux into the oceans 
exist for the pre-satellite era. One indirect method of estimat-
ing the polar mass contributions is to use regional variations in 
the sea-level response to ice-mass change (‘fingerprinting’; see 
Box 1). Initial applications of this method inferred a sea-level 
trend from Greenland water flux of 0.35 to 0.6 mm yr-1 (refs 27, 
28). Unfortunately, steric and dynamical ocean-level changes are 
significantly larger than the ice-induced signal in most areas29 
and so should be removed using a combination of ocean models 
and available data. Such a combination is available for the satellite 
altimeter period30, but for earlier periods this procedure is more 
speculative. Although, the improved ocean-temperature time 
series produces less decadal variability in sea level owing to the 

thermosteric process11,24 (thus reducing the discrepancy between 
observations and climate models31,32), there are still significant 
unexplained signals in total sea-level variability. There is a need 
to assess how much of the dynamical signal can be explained by 
realistically forced ocean models, beyond the regional analysis of 
simplified models33,34, and to consider the dynamical as well as the 
gravitational and isostatic response to melting ice35.

An influential paper by Munk36 reviewed the status of closure 
in the sea-level budget for the twentieth century and reached a 
number of conclusions. One of these, based on observations and 
model predictions of changes in Earth’s rotation, limited the melt 
contribution from the two ice sheets. The lack of closure led Munk 
to coin the term ‘sea-level enigma’ as there was no clear solution 
at that time. The identification of an error in the standard theory 
of polar motion of the Earth, together with a reassessment of the 
error bounds on constraints placed by measurements going back 
to 1979, has shown that geodetic constraints on ice melt over the 
pre-GRACE period are weaker than previously thought37. This 
result provides a solution to the ‘enigma’ by broadening the uncer-
tainty on the contribution of ice melt to twentieth century global 
mean sea-level rise.

Vertical land motion can introduce highly localized signals to 
tide-gauge records (tide gauges measure motion of the sea sur-
face relative to the land). One way to reduce the impact of land 
motion on estimates of global mean sea-level rise in the twentieth 
century is to measure directly the land motion component using 
the global positioning system and remove it to isolate the sea-
surface height variation. A recent application of this method 
resulted in a decreased standard deviation of the corrected tide-
gauge rates by 35% (ref. 38). The reduced estimate of global mean 
sea-level rise (1.3 mm yr-1) offers another solution to the ‘enigma’. 
The rates of land motion from the global positioning system are 
obtained from a relatively short times series (< 10 yr in general) 
and so this correction procedure may be less applicable in regions 
where the recent land motion might not represent that for the 
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Figure 1 | Mean rate of sea-surface height change during october 
1992 to May 2007, determined from satellite altimetry measurements. 
Measurements were corrected for the inverted barometer effect. The large 
spatial variability reflects the dominance of dynamical ocean processes 
over this period. The measurement error at a given point is difficult to 
assess, but is probably less than 2 mm yr-1. Variations also occur on many 
different timescales, such that a linear trend is not a statistically significant 
fit to the time series at most locations; the trend is merely indicative of the 
kind of variability to be found.
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past 50–100 years (for example, those affected by frequent and 
large earthquakes, sediment compaction, large-scale mining and 
land reclamation).

Rates of sea-level change varied both spatially and temporally 
during the twentieth century (Fig. 2), and decadal rates of glo-
bal sea-level rise show large variations throughout this period39. 
A number of recent analyses have studied sea-level accelerations 
and regional patterns of sea-level change29,40,41, and have shown 
that regional differences, at least partly associated with ocean 
dynamical response to changes in atmospheric forcing, persist 
on multidecadal timescales. Thus, in certain locations, dynami-
cal processes may have contributed significantly to the observed 
twentieth-century trend. The influence of these dynamical signals 
complicates the determination of a global mean acceleration from 
sea-level records longer than 100 yr. For this application, sup-
plementing the tide-gauge data with sea-level data reconstructed 
from the geological record is highly beneficial. There is strong 
evidence that global mean sea-level rise has accelerated from a rate 
of centimetres per century in the past few millennia to decimetres 
per century in the twentieth century42,43, but this acceleration 
does not appear to have been synchronous. High-resolution 
sea-level records from salt marshes in the North Atlantic44,45 and 
New Zealand46 (Fig. 2c) date this acceleration between 1880 and 
1920. However, instrumental records41 and other proxy records47 
demonstrate a regional non-synchroneity of sea-level accelerations 
during the past two centuries. This non-synchroneity probably 
reflects the spatial variability of sea-level change owing to the 

influence of land-ice changes, ocean-temperature change and 
long-term ocean dynamics.

The past decade has seen the proposal and solution of an attri-
bution problem in explaining the observed global mean sea-level 
rise for the twentieth century. At present, uncertainties in the 
observed global mean trend, as well as in the magnitudes of vari-
ous contributing processes are large enough to account for any 
remaining imbalance. An important focus for future research is to 
understand better the observed temporal and spatial variability in 
sea-level change with respect to the underlying oceanographic and 
climatic processes.

the geological record
Observations of sea-level change during the past few hundreds to 
thousands of years are determined through the use of palaeoeco-
logical or morphological information in the geological record (see 
Table 1). Height and time precision of these records lie in the ranges 
of tens of metres to decimetres, and thousands of years to a few 
years, respectively. Spatial sampling is, in general, poor compared 
with the distribution of tide gauges, and the majority of the data 
span parts of the Holocene period only (10,000 yr ago to present), 
with a distinct paucity of data before the Last Glacial Maximum 
around 25,000 yr ago.

During the most recent glacial–interglacial transition 
(~20,000–7,000 yr bp) the rates and patterns of sea-level changes 
were dominated by the mass exchange between ice sheets and 
oceans, and its influence on the solid Earth and gravity field48–50. 
We note that, although there were large ocean-temperature changes 
during the most recent glacial–interglacial transition51, the steric 
effect is likely to have been within data uncertainty in most regions 
(but this remains to be demonstrated). Figure 3 shows a selection 
of data that illustrates some of the spatial and temporal variability 
of the sea-level response to the ice–ocean mass exchange. At sites 
distant from major glaciation centres (Fig. 3a–c), sea-level change is 
dominated by the rate of global ice melt. The observed fall in sea level 
following the end of major melting (~7,000 yr bp; Fig. 3b) is due to 
isostatic processes52. A growing number of high-resolution records 
(Fig. 3c) detect an acceleration in sea level around ad 1850–1900 
(refs 43–45). In regions once covered by large ice sheets (for 
example, Fennoscandinavia, Canada) crustal uplift dominates the 
response, leading to a monotonic sea-level fall (Fig. 3d). This signal 
can become relatively complex in adjacent areas (Fig. 3e) owing to 
the interplay between local isostatic and global meltwater signals. 

Sea levels in mid-to-low latitudes rose, on average, at a rate of ~1 m 
per century (Fig. 3a), with this rate increasing to ~4 m per century 
during periods of exceptionally rapid melting that lasted only a few 
centuries53,54 (Table 1). Of course, these rates must be interpreted 
carefully when attempting to place a bound on possible rates of 
future rise as they occurred when there was 70% more grounded ice 
on Earth, a significant portion of which was located on continental 
shelves and therefore inherently unstable. A recent study combining 
field evidence of ice-margin retreat, palaeoclimate observations and 
modelling has argued that mass loss from the Laurentide ice sheet 
dominated global melting in the early Holocene and that the rates of 
low-latitude sea-level rise measured during this period (about 1 m 
per century) are plausible in the twenty-first century owing to the 
response of the Greenland ice sheet to predicted warming55.

More direct analogues for the response of the present ice sheets 
to future warming can be found by considering past and present 
interglacial periods when ice extent was similar to that at present. 
During the previous interglacial, global mean sea level is estimated 
to have been about 4 to 6 m higher than at present in response to 
elevated temperatures sustained over a few millennia56. Studies 
have indicated that significant volume reductions of both the 
Greenland57,58 and West Antarctic ice sheets59,60 were largely respon-
sible, and that rates of sea-level change during this period may have 
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reached values exceeding 1 m per century6,60. During the early to 
mid-Holocene, the Greenland ice sheet was subjected to tempera-
tures about 2 oC higher than present values61 (compared with ~5 oC 
during the previous interglacial58). The response of the ice sheet to 
this more modest forcing appears to have been a few decimetres of 
ice-equivalent sea-level change62,63 with rates of melt on the order of 
1 cm per century.

During the mid- to late Holocene, subsequent to the complete 
disintegration of ice sheets in North America and Eurasia by 
~7,000 yr bp, the magnitude and rates of ice melting have been 
relatively small. Sea-level records from mid-to-low-latitude 
locations (for example, Fig. 3b), when corrected for isostatic effects, 
indicate about 3 m of ice-equivalent sea-level change between 
approximately 7,000 and 3,000 yr bp. There is some disagreement 
on the timing of the end of ice melting64,65, which probably reflects 
differences in model parameterization and data precision. The 
IPCC65 allows for up to 0.4 m of ice-equivalent sea-level rise since 
2,000 yr bp, but considers it more likely that this value has been 
zero (within data error bounds) from this time until the accelera-
tion to modern rates. This is corroborated by archaeological data 
from the Mediterranean region66.

Much of the melt in the mid- to late Holocene has been attributed 
to the Antarctic ice sheet67. This proposal is supported by evidence 
for contributions of only a few decimetres from the Greenland 
ice sheet68–71 and small glaciers56 during this period, and is also 
consistent with a growing body of data from Antarctica. Das and 
Alley72 documented a change towards a more maritime climate in 
West Antarctica in the late Holocene, which led to considerable ice 
retreat in Marie Byrd Land73 and the Amundsen Sea embayment74. 
Using an ice-load model of the Antarctic ice sheet constrained by 
field evidence of past ice extent and contemporary mass-balance 
measurements, Ivins and James75 estimated that the ice sheet has 

contributed ~4 m to global mean sea-level rise since ~7,000 yr ago, 
with the majority of this delivered by ~3,000 yr ago.

Sea-level observations for the mid- to late Holocene provide con-
straints on the natural variability of sea-level change immediately 
preceding the industrial revolution. These data indicate that local 
rates were generally at the 1–10 cm per century level (see Table 1). For 
example, high-resolution records based on salt-marsh stratigraphy76 
and microatolls77 show that regional short-term fluctuations did not 
exceed 0.2 m per century during the middle and late Holocene, 
including the Medieval Climatic Optimum78,79. (We note that these 
rates are an order of magnitude lower than rates of ice-equivalent 
sea-level change inferred for some previous interglacial periods 
using oxygen isotope records5,6.) In most studies, the observations 
have been interpreted in terms of vertical land motion and/or 
land-ice contributions to sea-level change. However, the contribu-
tions from steric changes and long-term ocean dynamics may be 
significant in some areas. For example, during the past 8,000 years, 
sea surface temperatures determined from proxy records indicate 
changes of several oC in magnitude — with some regions experienc-
ing a distinct warming and others a cooling80.

Reconstructions of past sea-level changes demonstrate that the 
sea-level response to changes in ice sheets has a high degree of 
spatial and temporal variability over century to millennial times-
cales. Rates of rise on the order of metres per century sustained over 
several centuries have occurred in the past during major deglaciation 
events. Whether such rates can be achieved with the current configu-
ration of ice sheets, as suggested by oxygen isotope data from the last 
interglacial6, remains an important question for future research.

towards improved predictions of future sea-level change
A tightly constrained prediction of sea-level change in the coming 
decades to millennia requires knowledge of the climate forcing and 
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an ability to calculate accurately the sea-level response to this forc-
ing. The uncertainties in both of these elements are reflected in the 
spread of global mean sea-level projections offered in the most recent 
IPCC report2: 0.18–0.59 cm between 1980–1999 and 2090–2099.

Although 70–75% of the IPCC projected rise is due to ocean-
temperature change, the influence of ice dynamical changes is 
identified as a major source of uncertainty. Ongoing and future 
efforts to improve understanding of the processes that control ice 
discharge in the large ice sheets and marine-terminating glaciers 
will have a central role in constraining better the land-ice contri-
bution to sea level over the twenty-first century. Sea-level changes 
reconstructed from the geological record can provide useful 
constraints on upper limits of ice melt, particularly when combined 
with additional observational and modelling constraints to isolate 
the climatic conditions and ice sheet(s) responsible for a given rate 
of rise55,81. Sea-level and climate records for previous interglacial 
periods are of particular interest given the similar ice extent and 
temperatures of present-day conditions (although forcing factors, 
such as insolation and CO2, may differ). The high rates of sea-level 
change interpreted from oxygen isotope records5,6 are certainly 
troubling and warrant further investigation, particularly through 
the use of more precise proxy methods.

If spatial variability in sea level were to be included in sea-level 
projections for the twenty-first century, the spread in possible 
values, which would be defined for a specific region or locality, 
would probably be significantly different than that for the global 
mean. For example, a recent study concluded on a sea-level rise 
of 30–80 cm by 2100 in northwest Europe82. It is possible that in 
specific areas, the upper bound could be significantly higher owing 
to, for example, land subsidence83, ocean dynamics84, and gravi-
tational and rotational changes due to ice melting85. Even though 
producing regional projections of sea-level change is considerably 
more challenging, it must be a focus of future research given the 
large spatial variability in past changes.

It has become clear from satellite altimetry that steric and 
dynamic changes have dominated spatial variability in the past few 
decades and so will probably continue to do so in the twenty-first 
century. Although future projections of this component are 

converging, there remains significant discrepancy at the regional 
scale2. It is critical to maintain the current level of observational 
control (both satellite and in situ systems) to test and calibrate the 
models over decadal and longer periods. In addition, devising more 
sophisticated combinations of geodetic and oceanographic data, as 
well as correctly accounting for temperature sampling errors, will 
result in more rigorous testing of current models.

Advances in our understanding of the causes of past and present 
sea-level change have been remarkable in the past decade and this 
progress continues unabated86,87. The rich observational database 
made available through satellite monitoring has had a central role 
in the rate of progress. Our understanding of the causes of sea-level 
changes in the late 1900s and early 2000s will continue to grow as 
time series lengthen and methods of analysis improve. Observations 
of the sea-level response before the satellite era from both tide gauges 
and proxy methods provide the length of time series necessary to 
isolate and interpret the climate component and place the more 
recent changes in context. Even though current uncertainty on glo-
bal mean and regional sea-level change for the twenty-first century 
is at the metre level, this will no doubt improve in the coming years 
assuming that observational initiatives are supported.
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