
Irreducible imprecision in atmospheric
and oceanic simulations
James C. McWilliams*

Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1565

Contributed by James C. McWilliams, April 4, 2007 (sent for review March 1, 2007)

Atmospheric and oceanic computational simulation models often

successfully depict chaotic space–time patterns, flow phenomena,

dynamical balances, and equilibrium distributions that mimic na-

ture. This success is accomplished through necessary but non-

unique choices for discrete algorithms, parameterizations, and

coupled contributing processes that introduce structural instability

into the model. Therefore, we should expect a degree of irreducible

imprecision in quantitative correspondences with nature, even

with plausibly formulated models and careful calibration (tuning)

to several empirical measures. Where precision is an issue (e.g., in

a climate forecast), only simulation ensembles made across sys-

tematically designed model families allow an estimate of the level

of relevant irreducible imprecision.
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Extensive experience over several decades shows that compu-
tational atmospheric and oceanic simulation (AOS) models

can be devised to plausibly mimic the space–time patterns and
system functioning in nature. Such simulations provide fuller
depictions than those provided by deductive mathematical anal-
ysis and measurement (because of limitations in technique and
instrumental-sampling capability, respectively), albeit with less
certainty about their truth.

AOS models are widely used for weather, general circulation,
and climate, as well as for many more isolated or idealized
phenomena: flow instabilities, vortices, internal gravity waves,
clouds, turbulence, and biogeochemical and other material
processes. However, their solutions are rarely demonstrated to
be quantitatively accurate compared with nature. Because AOS
models are intended to yield multifaceted depictions of natural
regimes, their partial inaccuracies occur even after deliberate
tuning of discretionary parameters to force model accuracy in a
few particular measures (e.g., radiative balance for the top of the
atmosphere; horizontal mass flux in the Antarctic Circumpolar
Current).

Weather forecasts have both demonstrable skill and appre-
ciable error (1). Climate predictions for anthropogenic global
warming are both broadly credible yet mutually inconsistent at
a level of tens of percent in such primary quantities as the
expected centennial change in large-scale, surface air tempera-
ture or precipitation (2, 3). Slow, steady progress in model
formulations continues to expand the range of plausibly simu-
lated behaviors and thus provides an extremely important means
for scientific understanding and discovery. Nevertheless, there is
a persistent degree of irreproducibility in results among plausibly
formulated AOS models. I believe this is best understood as an
intrinsic, irreducible level of imprecision in their ability to
simulate nature.

AOS Models

The central component of AOS models is f luid dynamics man-
ifested as turbulence explicitly in the space–time structure of a
solution, implicitly in the formulation of turbulent effects (e.g.,
material mixing), or often both. Turbulence is the epitome of
chaos in its evident disorder but also in the partial order of its
recurrent patterns. Additional physical, chemical, and biological

components are included as appropriate to the target problem.
Global, equilibrium target problems include the influences of
Earth’s rotation, gravity, f luid compositions, and solid-surface
configuration, as well as forcings by solar radiation, gravitational
tides, and air–sea–land interface fluxes of momentum, heat, and
materials. Local and limited-time target problems include
boundary and initial conditions extracted or abstracted from the
equilibrium global air–sea dynamical system.

The fruits of AOS are the many forms of intrinsic variability
that spontaneously arise through instability of directly forced
circulations and have important feedbacks on large-scale, low-
frequency fields. Their varieties include coherent atmospheric
storms and oceanic eddies, gravitational and rotational waves
emitted in internal adjustments, turbulent transports between
different locations, and cascades of variance and energy across
the space–time spectrum that effect the mixing and dissipation
essential for evolution toward balance with the forcing. An AOS
can provide reliable realizations for idealized processes. AOS
solutions expose structural and dynamical relations among dif-
ferent measurable quantities. They yield space–time patterns
reminiscent of nature (e.g., visible in semiquantitative, high-
resolution satellite images), thus passing a meaningful kind of
Turing test between the artificial and the actual. They exhibit
emergent behaviors that are not (yet) mathematically deducible
from known dynamical equations for fluids, such as a tornado,
a Gulf Stream path, or a decadal ‘‘teleconnection’’ relation
between western tropical Pacific cumulus convection and a
nearly hemispheric standing-eddy pattern in surface air pressure.

Atmospheric and oceanic forcings are strongest at global
equilibrium scales of 107 m and seasons to millennia. Fluid
mixing and dissipation occur at microscales of 1023 m and 1023

s, and cloud particulate transformations happen at 1026 m or
smaller. Observed intrinsic variability is spectrally broad band
across all intermediate scales. A full representation for all
dynamical degrees of freedom in different quantities and scales
is uncomputable even with optimistically foreseeable computer
technology. No fundamentally reliable reduction of the size of
the AOS dynamical system (i.e., a statistical mechanics analo-
gous to the transition between molecular kinetics and fluid
dynamics) is yet envisioned.

This reality in nature and computers has given rise to two
pervasive AOS practices: (i) AOS solution fields are nonsmooth
near the space–time discretization scales (i.e., the ‘‘resolution’’
of the model) imposed on the known governing principles
expressed mostly as partial differential equations. (ii) AOS
models contain essential parameterizations for unresolved or
highly simplified processes whose specifications are not at a
fundamental level of known governing principles.
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Both practices are coping strategies to span as large a subrange
as feasible for the uncomputably broad scale in the most
fundamentally grounded fluid dynamical problem. Nonsmooth-
ness is a consequence of trying to separate the resolved scales
and processes from the parameterized ones. Among their other
roles, parameterizations regularize the solutions on the grid scale
by limiting fine-scale variance (also known as computational
noise). This practice makes the choices of discrete algorithms
quite influential on the results, and it removes the simulation
from the mathematically preferable realm of asymptotic con-
vergence with resolution, in which the results are independent of
resolution and all well conceived algorithms yield the same
answer. The fruits of AOS are generally considered more
satisfactory when the resolution is increased and simultaneously
the parameterization schemes are adjusted to maintain an
acceptable degree of nonsmoothness, thus maximizing the
breadth of the resolved scale range for the available computa-
tional capability.

Parameterizations are nonfundamental model elements that
represent important aspects of AOS system functioning. Exam-
ples are cloud and aerosol microphysics, radiative transfer in
heterogeneous media, watershed hydrological routing, subgrid-
scale boundary form stress by topographic roughness, and spatial
transport and down-scale variance cascade in turbulent bound-
ary layers near the air–sea–land interfaces (also known as eddy
diffusion). Parameterization schemes are typically formulated by
asserting the desired qualitative effects, devising a mathematical
representation to achieve them, and parametrically fitting the
rate constants either to independent measurements or to some
aspect of the AOS results they control. Within this methodology
there is room for plausible alternative parameterization schemes,
i.e., nonuniqueness. Some useful parameterizations are also
nondifferentiable (e.g., in the transition from a convective to a
stably stratified boundary layer), and this compounds AOS
nonsmoothness in ways unrelated to resolution convergence.

In a scientific problem as potentially complicated as climate,
there is another modeling practice that is increasingly important:
AOS models are open-ended in their scope for including and
dynamically coupling different physical, chemical, biological,
and even societal processes.

The rationales for coupling are to investigate potentially
significant feedbacks (e.g., radiative properties for different
airborne crystalline ice structures, changes in air and water
inertia due to suspended dust and sediments, and water and
other material exchanges with plants and biome evolution) and
to achieve ever fuller depictions of Earth’s f luid envelope.
Besides adding to the overall complexity of AOS models,

coupling increases the number of processes with a nonfunda-
mental representation (i.e., similar to a parameterization), be-
cause, for the most part, the governing equations are not well
determined for the model components other than fluid dynam-
ics. When adding a new coupling link, there is no a priori
guarantee of seeing only modest consequences in the AOS
solution behavior.

Of course, models can be formulated that eschew these
practices. They are mathematically safer to use, but they are less
plausibly similar to nature, with suppressed intrinsic variability,
important missing effects, and excessive mixing and dissipation
rates.

AOS models are therefore to be judged by their degree of
plausibility, not whether they are correct or best. This perspec-
tive extends to the component discrete algorithms, parameter-
izations, and coupling breadth: There are better or worse choices
(some seemingly satisfactory for their purpose or others needing
repair) but not correct or best ones. The bases for judging are a
priori formulation, representing the relevant natural processes
and choosing the discrete algorithms, and a posteriori solution
behavior. Plausibility criteria are qualitative and loosely quan-
titative, because there are many relevant measures of plausibility
that cannot all be specified or fit precisely. Results that are
clearly discrepant with measurements or between different
models provide a valid basis for model rejection or modification,
but moderate levels of mismatch or misfit usually cannot dis-
qualify a model. Often, a particular misfit can be tuned away by
adjusting some model parameter, but this should not be viewed
as certification of model correctness.

Sensitive Dependence and Structural Instability

AOS models are members of the broader class of deterministic
chaotic dynamical systems, which provides several expectations
about their properties (Fig. 1). In the context of weather
prediction, the generic property of sensitive dependence is well
understood (4, 5). For a particular model, small differences in
initial state (indistinguishable within the sampling uncertainty
for atmospheric measurements) amplify with time at an expo-
nential rate until saturating at a magnitude comparable to the
range of intrinsic variability. Model differences are another
source of sensitive dependence. Thus, a deterministic weather
forecast cannot be accurate after a period of a few weeks, and
the time interval for skillful modern forecasts is only somewhat
shorter than the estimate for this theoretical limit. In the context
of equilibrium climate dynamics, there is another generic prop-
erty that is also relevant for AOS, namely structural instability
(6). Small changes in model formulation, either its equation set

Fig. 1. Generic behaviors for chaotic dynamical systemswith dependent variables j(t) andh(t). (Left) Sensitive dependence. Small changes in initial or boundary

conditions imply limited predictability with (Lyapunov) exponential growth in phase differences. (Right) Structural instability. Small changes in model

formulation alter the long-time probability distribution function (PDF) (i.e., the attractor).
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or parameter values, induce significant differences in the long-
time distribution functions for the dependent variables (i.e., the
phase-space attractor). The character of the changes can be
either metrical (e.g., different means or variances) or topological
(different attractor shapes). Structural instability is the norm for
broad classes of chaotic dynamical systems that can be so
assessed (e.g., see ref. 7). Obviously, among the options for
discrete algorithms and parameterization schemes, and perhaps
especially for coupling to nonfluid processes, there are many
ways that AOS model equation sets can and will change and
hence will be vulnerable to structurally unstable behavior.

A seminal, atmospherically motivated example of chaos is
Lorenz’s low-order, Galerkin truncation of midlatitude jet and
weather dynamical equations (8). It exhibits several bifurcations
with respect to changes in the steady forcing amplitude F as a
control parameter. The chaotic regime is the quasi-periodic
‘‘strange attractor’’ as a paradigm for sensitive dependence and
limited predictability. Its attractor has the phase-space portrait
of a butterfly. This model is also structurally unstable in several
ways. Transitions between the strange attractor regime and
periodic limit cycles are densely intermixed for slightly different
F values, and the mostly accurate ‘‘balance’’ approximations to
Lorenz’s equations have different transitional F values (9). The
attractor is even more substantially altered by changing the
truncation order of the model (10).

Although we may expect a chaotic AOS model to be struc-
turally unstable, it is difficult to explicitly make this determina-
tion. The attractor cannot be fully visualized or measured
because the phase space has such a high dimension (i.e., high
order). Probability distribution functions (PDFs) (Fig. 1) give at
least a rough view of an AOS attractor. There are many aspects
to the equation set for a model, most notably in the choices of
discrete algorithms, parameterizations, and coupling scope, and
these are usually not systematically explored in AOS practices.
To do so requires formulating multiple models for a given
problem. Even systematic scans in the parameter values of a
complicated AOS model are rarely published, although param-
eter variations are commonly made while tuning a model to
improve its plausibility.†

Nevertheless, I advocate the hypothesis that plausible, chaotic
AOS models have important levels of irreducible imprecision
due to structural instability resulting from choices among a set
of modeling options that cannot be clearly excluded. The level of
irreducible imprecision will depend on the context, and this level
is likely to be greater the more chaotic and multiply coupled the
targeted flow regime is.

Examples of Irreducible Imprecision

To illustrate the issues, first consider a problem in pure fluid
dynamics with the incompressible Navier–Stokes equations at
large Reynolds number Re (i.e., a parameter for the ratio of
advective and viscous rates). Vortices permeate atmospheric and
oceanic flows and spontaneously emerge in AOSs. From ran-
dom, intermediate-scale initial conditions, a two-dimensional
f low evolves without forcing in a spatially periodic domain with
a small viscosity coefficient effective only on smaller scales than
the initial ones. This type of flow has emergent coherent vortices
whose mutual interactions control the long-time evolution (12).
The flow is chaotic, and it exhibits sensitive dependence with
respect to individual vortices. If one takes the narrow view that
the governing equations are nonnegotiable and follows a con-
servative computational practice by limiting the size of Re to

make the viscous dissipation scale (also known as the Kolmog-
orov scale) much larger than the grid scale, then this system is
widely believed, but not proven, to be structurally stable with
respect to the only available discretionary modeling choices: the
value of Re, the choice of discrete algorithm, the grid resolution,
and the particular initial-state realization. Call this the funda-
mental formulation for the problem.

The fundamentally formulated problem is far from being an
AOS to compare with nature.‡ An important mismatch is that its
computable versions all have much smaller Re values than is
plausible for large- and meso-scale atmospheric and oceanic
vortices. The mismatch can be addressed partially by following
the practices discussed in the second section, namely by allowing
solutions to be less smooth on the grid scale and parameterizing
the viscous diffusion and dissipation. One approach is to use the
class of ‘‘quasi-monotone’’ discrete advection operators and
dispense with the viscous diffusion component in the model
equations. For the fundamental advection–diffusion dynamics,
isolated vorticity extrema are provable to be nonincreasing with
time. Monotone advection operators are designed to strongly
limit or prohibit the occurrence of false extrema in the advected
field (here the vorticity, the velocity curl) by using an upstream-
bias in the finite differencing or otherwise constraining the shape
of the field. Monotone advection operators are widely used in
AOS models, especially for material concentrations for which
spurious negative values are both chemically and biologically
impossible and computationally dangerous. The character of the
discretization error for monotone operators is a smoothing of the
advected field near the grid scale (the opposite of introducing
spurious extrema). So they provide a parameterization for
mixing and dissipation that automatically changes when the
resolution is changed.

In ref. 15, many different monotone operators are used for
two-dimensional flow to guide the choice of the discrete advection
algorithm in an oceanic simulation model. Their set of solutions can
also be used as a model ensemble to illustrate structural instability
and irreducible imprecision. All of the plausible operator options
give solutions with the correct phenomenology (Fig. 2), and all of
them give solutions in close agreement at relatively early times, with
even better convergence with higher resolution. Sensitive depen-
dence for each model formulation is expressed in the variable
number, positions, and amplitudes of individual vortices at a
particular later time as a consequence of different initial conditions
or model formulation (data not shown). Furthermore, after a
sufficient evolution time, the average vortex number, amplitude set,
and characteristic shape for the radial decay of vorticity away from
central extrema all vary substantially among the different model
formulations; e.g., the alternatives in Fig. 2 show that the top row
has relatively weak and broad vortex profiles, the middle row has
blunt shapes for the extrema, and the bottom row has strong cuspy
extrema. For each model, there are important (and dynamically
interesting) trends with increasing resolution toward a population
with stronger, more abundant, and incrementally smaller vortices.
These trends are therefore a meaningful surrogate for what can be
inferred to occur with increasing Re in the more physically
grounded and structurally stable form of the problem, but the
solutions with monotone operators are much farther along in these
measures than in the fundamental problem at the same resolution
and size of the computation (data not shown). For each model
formulation in Fig. 2, the solutions show a plausible consistency
with different resolutions (accounting for the trends), but between
the formulations, the differences do not strongly diminish with
resolution. Expressed in terms of distribution functions for the

†Common but mostly anecdotal experiences are that such parameter scans can indicate

quite roughmodel-fitness landscapes that might be seen as an indication andmeasure of

structural instability. (This analogy with ecological fitness landscapes was expressed in a

preliminary version of ref. 11.)

‡This perspective is expressed in the characterization of an AOS as a ‘‘pseudofluid’’ (13). It

is also implicit in the traditional distinction between direct numerical simulation and

large-eddy simulation for turbulent flows (e.g., see ref. 14).
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vorticity field, the different formulations yield similar shapes but
with persistent differences with increasing Re (as sketched for a
metrical structural instability in Fig. 1). The same conclusions hold
for the broader class of operators examined in ref. 15, in which more
quantitative measures of operator differences are presented. Inso-
far as many, if not all, of these operator choices are plausible from
the perspectives of algorithmic design and solution behavior, then
their differences demonstrate an irreducible imprecision compared
with the practically inaccessible truth about fluid dynamics with
appropriately large values of Re. And if that truth standard were
somehow accessible, the motivations for relevance to nature would
push the AOS even higher in its effectively equivalent Re value,
again into an inaccessible realm for the fundamental problem.

Pure fluid dynamics may be at the core of the AOS modeling
problem, but nature combines fluid physics with other processes,
and we must look to more comprehensive model formulations to
be able to assess simulation accuracy against the relevant
empirical reality. Thus, we can consider the many comparison
studies that show a substantial spread among the results from
AOS models created by different groups, as well as in the degree
of correspondence with observations. Because each of the
models is created independently, such model ensembles are
more opportunistically assembled than systematically designed.

Furthermore, the compared models are typically being refor-
mulated by their creators faster than they can be compared with
each other. So the comparisons are more like snapshots of model
differences than careful, enduring assessments.

An example is large eddy simulations for cloud-topped surface
atmospheric boundary layers. In ref. 16, 15 different models are
compared for a regime with trade wind cumuli. Vertical profiles
for heat, water, and velocity differ among the models by tens of
percent in their means and variances and by similar amounts
compared with measurements. Within a single participating
model, changes in the advection algorithm and subgrid-scale
turbulence parameterization scheme show qualitative differ-
ences in the simulated cloud patterns. And differences between
two of the models increase as the resolution increases. Similar
characteristics are found in a regime of nocturnal stratus clouds,
in which measurements show quantitative discrepancies with the
model ensemble at a level comparable to, but not entirely within,
the ensemble spread (17).

AOS model comparisons have also been made for the oceanic
and atmospheric general circulations. Two separate ensemble
comparisons are reported in refs. 18 and 19 for the time-average
North Atlantic oceanic circulation with commonly specified
surface forcing fields. Ref. 20 describes a frequently repeated
type of comparison among global atmospheric models by using
observationally specified oceanic surface-temperature fields
with seasonal and interannual changes. Again, the ensemble
spreads are substantial, and measures of their realism have
mixed success in matching measurements.

More famously, the Intergovernmental Panel on Climate
Change (IPCC) report (21) shows the spread among climate
models for global warming predictions. One of its results is an
ensemble-mean prediction of '3°C increase in global mean
surface temperature for doubled atmospheric CO2 concentra-
tion with an ensemble spread of '50% on either side. The
predicted value for the climate sensitivity and its intermodel
spread have remained remarkably stable throughout the modern
assessment era from the National Research Counsel (NRC) in
1979 (22) to the anticipated results in the IPCC Fourth Assess-
ment Report (foreshadowed, e.g., in ref. 3) despite diligent
tuning and after great research effort and progress in many
aspects of simulation plausibility. An even broader distribution
function for the increase in mean surface air temperature is the
solution ensemble for a standard atmospheric climate model
produced by Internet-shared computations (23), but there is a
question about how carefully the former ensemble members
were selected for their plausibility.

In each of these model–ensemble comparison studies, there
are important but difficult questions: How well selected are the
models for their plausibility? How much of the ensemble spread
is reducible by further model improvements? How well can the
spread can be explained by analysis of model differences? How
much is irreducible imprecision in an AOS?

Simplistically, despite the opportunistic assemblage of the
various AOS model ensembles, we can view the spreads in their
results as upper bounds on their irreducible imprecision. Opti-
mistically, we might think this upper bound is a substantial
overestimate because AOS models are evolving and improving.
Pessimistically, we can worry that the ensembles contain insuf-
ficient samples of possible plausible models, so the spreads may
underestimate the true level of irreducible imprecision (cf., ref.
23). Realistically, we do not yet know how to make this assess-
ment with confidence.

Implications for AOS Practices and Expectations

An appreciation of the AOS property of sensitive dependence has
led to the practice of ensemble weather forecasting on the basis of
a set of solutions using initial conditions perturbed around the
estimated atmospheric state (24, 25). The evolving spread among

Fig. 2. Examples of simultaneous, late-time vorticity fields plotted as eleva-

tion in a two-dimensional, spatially periodic domain for freely evolving tur-

bulence. The initial conditions and the vorticity-amplitude scale are identical

in each case. (Left) Three different discrete monotone advection operators

(i.e., UTOPIA and ELADwithout and with an extremum discriminator; see ref.

15) on a 2562 grid. (Right) The same operators on a 5122 grid. The right-corner

spike in each figure represents the largest minimum at the initial time.
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the individual forecasts exposes the degree of reliability in the
ensemble-mean forecast. Similarly an appreciation of the property
of structural instability ought to lead to the practice of ensemble
AOS modeling on the basis of a set of deliberately varied model
formulations, to expose the reliability and precision of the simu-
lated behaviors.§ It can even be useful in a forecast ensemble to
include variations in the model formulation if the structure of the
long-time attractor manifests in limited-time integrations relative to
the initial-state influence (27). Weather ensembles have a great
practical advantage over general circulation and climate ensembles
in their repeatable comparability with nature.

Thus, there is a clear imperative to better understand the
consequences of the choices that are commonly made in con-
structing a plausible AOS model. This would allow a clearer
assessment of its precision compared with nature. This in turn
would better pose the question of whether or not model refor-
mulations might be devised to reduce the imprecision. However,
attempting to do these things will substantially increase the task
load for AOS modeling. Varying the model formulations in a
systematic way is much more difficult than varying the initial
conditions with random realizations from a specified spectrum.
Assessing the outcome from systematic model reformulations is
likely to be much more useful than the present practice of simply
comparing available AOS model solutions from different
groups. To explore structural instability, fuller measures are
needed for the attractor beyond the usual practices of analyzing
mean and variance fields, covariance eigenmodes (also known as
empirical orthogonal functions), and single-variate probability
distribution functions (PDFs). It is quite laborious to make an
AOS model, both in the code construction and in the necessary
testing and tuning, but it would not be too difficult to routinely
incorporate some alternative algorithms and parameterizations.
To further overcome the hurdle of model building, some new
techniques for automated, algorithmic procedures are needed to
enable many more models to be built and tested. Recipes are
needed for the types of model variations to incorporate. Some of
the likely ingredients are grid resolution, forcing fields, and
parameters; already, these are often explored and sometimes

publicly reported by careful modelers. More problematic ingre-
dients are the feasible means of varying discrete algorithms and
parameterization schemes systematically, rather than merely
opportunistically.¶ Once included in an AOS model, the conse-
quences of various couplings are straightforward to assess by
systematically disabling the elements of an AOS model. It is
much more daunting, if not impossible, to know a priori the
consequences of coupling some new process into dynamical
systems as chaotic as general circulation and climate. The AOS
agenda is to push ahead and explore plausible additional cou-
plings, again leading to more models.

In the context of a systematically designed AOS model en-
semble for a given problem, there can be inspiration, if not
guidance, for further model development by examining the
nature and causes of the spread among the answers. Outlier
results are of particular interest, negatively in identifying can-
didates for model rejection and positively in implicating high
sensitivities in the model formulation. There is also great value
in establishing a model hierarchy to accompany the ensemble:
deliberate and successive simplifications in the model formula-
tion that retain the essential phenomenon in their answers as a
basis both for developing a mechanistic understanding and for
further demonstrating robustness (11, 29).

For many purposes that are well demonstrated with present
practices, AOS models are very useful even without the necessity of
carefully determining their precision compared with nature. These
models are structurally unstable in various ways that are not yet well
explored, and this implies a level of irreducible imprecision in their
answers that is not yet well estimated. Their value as scientific tools
is undeniable, and the theoretical limitations in their precision can
become better understood even as their plausibility and practical
utility continue to improve. Whether or not the irreducible impre-
cision proves to be a substantial fraction of present AOS discrep-
ancies with nature, it seems imperative to determine what the
magnitude of this type of imprecision is.

¶Simple stochastic representations for model variations are probably not germane to the

actual effects of alternative discretization schemes and parameterizations, and they have

not always been successful in encompassing nature within the model-ensemble spread;

e.g., ref. 28.
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