ACCESS
To read this story in full you will need to login or make a payment (see right).

Letter

Nature 463, 80-83 (7 January 2010) | doi:10.1038/nature08687; Received 6 December 2008; Accepted 9 November 2009

Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow

T. Ito¹, M. Woloszyn¹ & M. Mazloff²

1. Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, Colorado 80523-1371, USA
2. Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0230, USA

Correspondence to: T. Ito¹ Correspondence and requests for materials should be addressed to T.I. (Email: ito@atmos.colostate.edu).

The Southern Ocean, with its large surface area and vigorous overturning circulation, is potentially a substantial sink of anthropogenic CO₂ (refs 1–4). Despite its importance, the mechanism and pathways of anthropogenic CO₂ uptake and transport are poorly understood. Regulation of the Southern Ocean carbon sink by the wind-driven Ekman flow, mesoscale eddies and their interaction is under debate⁵, ⁶, ⁷, ⁸. Here we use a high-resolution ocean circulation and carbon cycle model to address the mechanisms controlling the Southern Ocean sink of anthropogenic CO₂. The focus of our study is on the intra-annual variability in anthropogenic CO₂ over a two-year time period. We show that the pattern of carbon uptake is correlated with the oceanic vertical exchange. Zonally integrated carbon uptake peaks at the Antarctic polar front. The carbon is then advected away from the uptake regions by the circulation of the Southern Ocean, which is controlled by the interplay among Ekman flow, ocean eddies and subduction of water masses. Although lateral carbon fluxes are locally dominated by the imprint of mesoscale eddies, the Ekman transport is the primary mechanism for the zonally integrated, cross-frontal transport of anthropogenic CO₂. Intra-annual variability of the cross-frontal transport is dominated by the Ekman flow with little compensation from eddies. A budget analysis in the density coordinate highlights the importance of wind-driven transport across the polar front and subduction at the subtropical front. Our results suggest intimate connections between oceanic carbon uptake and climate variability through the temporal variability of Ekman transport.

To read this story in full you will need to login or make a payment (see right).
Research Assistant, Professor, Post-Doctoral Fellow, Statistical Genetic Analyst, and Scientific Programmer Positions in Statistical Human Genetics
University of Michigan
Ann Arbor, Michigan, USA

More science jobs
Post a job for free

Nature ISSN 0028-0836
EISSN 1476-4687

About NPG
Contact NPG
RSS web feeds
Help
Privacy policy
Legal notice
Accessibility statement
Nature News
Naturejobs
Nature Asia
Nature Education

Search: