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Abstract. The growth rate of the second moment for the time series’ increment as a function of
the increment range can be used for estimating the sign of feedback of the underlying physical
system. The influence of the periodic nature of the time series to the growth rate of its structure
function is considered. The approach is used to describe the variability of the time series of the
global average outgoing long wave radiation (OLR). It is shown that the series’ annual cycle
plays a crucial role in preventing the growth of the variance of the time series’ increments
and leads to its nearly stationary long-range behaviour. The analysis of the OLR time series
indicates that a negative feedback should dominate in the earth climate system. The example is
believed to be useful for better understanding of the influence of the increasing concentration
of CO2 in the Earth’s atmosphere.
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1. INTRODUCTION

One of the largest challenges in the understanding of the behaviour of the
Earth’s climate variations consists in adequate estimation of the influence of
feedbacks in the climate system. The sign of the feedbacks is the key element of the
system. Currently, the feedback, connected to the increase of CO2 concentration in
the earth atmosphere, presents the main scientific interest [1].

A widely accepted understanding ([2], chapter 9) is that the equation for the
average radiation budget B at the top of the atmosphere

B = I(1− a)− F = 0, (1)

where I is the incident solar flux, a is the albedo of the system earth–atmosphere,
and F is the outgoing long wave radiation flux, can be used to estimate various
feedbacks in the earth climate system.
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Since Eq. (1) does not take into account the temporal variability, its use for
estimation of the long-term behaviour of B is questionable. In reality, due to
the eccentricity of the Earth’s orbit, the actual situation depends on time and all
processes in the earth’s climate system are under a strong influence of the annual
cycle of the radiation budget of the Earth.

The annual variation in the global net radiation budget was considered by
Simpson [3]. Vonderhaar and Suomi [4] indicated the possibility to obtain the
annual variation from limited sets of former satellite data. The first empirical
determination of the annual variation was carried out in [5], based on 29 months of
satellite data. The available datasets have been remarkably increased now and the
properties of the radiation budget have been established with a high accuracy.

The sign of the overall feedback of the global climate system is important
to comprehend the climate system variability. Hansen et al. [6] define climate
feedbacks as internal reactions of the climate system to (natural or anthropogenic)
climate change. This statement may cause some confusion. The state of the climate
system changes continuously due to the periodic solar forcing. This means that a
separation of the system’s change due to the outside forcing from the feedback is
methodically difficult. The fact that climate change is considered to happen over
a remarkably longer time period than the annual cycle does not help here. No-
one has ever succeeded in showing that the main climate variables (such as the
surface air temperature) present stationary time series. Vice versa, expectations
about non-stationarity can be found quite often [7]. This indicates that the detection
of the actual climate change by means of traditional thinking, based on the expected
stationarity of a stable climate, may be too simplistic.

It is evident that the separation of the changes due to the annual cycle in
the solar forcing from those occurring due to the feedback, caused by, e.g. the
reaction to the CO2 forcing, is impossible by means of any data analysis. Thus,
we need to estimate the feedback together with the customary forcing cycle
and to use indirect ways for that. The processes, called fractional Brownian
motions (fBm), enable us to do that on the basis of the fitted Hurst exponent H
(0 < H < 1) over the time interval of interest [8]. The fBm has an important
property, namely, a significant long-range correlation between its consecutive non-
overlapping increments. Similar correlations between the series increments can be
used for the estimation of the sign of the feedback.

Geophysical time series often behave scale-invariant over some time
interval [9]. Thus, one can interpret the exponent H as the indicator of the sign
of the feedback over that time scale. An analysis of several surface air temperature
time series in [10] showed that the estimates of H and correlations between the
consecutive increments led to the same result (namely, to an anti-persistent nature
of the underlying system) over a sufficiently long time interval.

In the present study the global mean outgoing long wave radiation series are
used to explain the problems, occurring in the attempts of estimating the nature
of the overall feedback of the Earth’s climate system to the existing forcing. The
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OLR describes the response to the forcing. Its variability can be used for estimating
whether the amplitude of the main forcing is amplified or suppressed through the
feedback loops. This is an attempt to explain how the annual cycle plays a crucial
role in causing the long-term anti-persistence in the globally averaged case. It
is shown that the annual cycle bounds the growth of the time series’ increments
variance while the increment range increases, because, energetically, the annual
amplitude of the increments is larger than the standard deviation of its anomalies.

2. THE TEMPORAL VARIABILITY OF THE OLR

The temporal variability of the climate system can be analysed on the basis of
the flux density F of the outgoing long wave radiation. It represents directly the
response of the climate system to the changes in solar forcing. The result can be
characterized by means of the effective temperature Te, where F = εσT 4

e , ε is the
emissivity of the radiating object, and σ is the Stefan–Boltzmann constant.

Satellite measurements of OLR by means of the advanced very high resolution
radiometer (AVHRR) have been carried out since 1974. The results have been
archived and are available on-line (dss.ucar.edu). In the present study the 5-
day averaged global values (pentads) from the time interval 1974–1999 are used.
The period from April 16, 1974 to December 31, 1978 in this record contains
interpolated data, because no actual measurement results are available for that
period.

A 10-year example of OLR and Te series is shown in Fig. assuming ε = 1.
Both series have a periodic nature. The cycle can be approximated as follows:

X(t) = A0 + A1 cos
(

2πt

365
+ φ1

)
, (2)

where A0 = 231.2, A1 = −4.55 and φ1 =- 0.210 for the OLR record and
A0 = 252.69, A2 = −1.24 and φ2 = −0.211 for Te. The use of more harmonics
will lead to a better fit but is not necessary for the current task, because an adequate
description of the periodic component with the largest amplitude is sufficient to
describe the main idea of the paper.

We can write the time series of quantities F and Te as follows:

F (t) = Fa(t) + ε1(t),
Te(t) = Tea(t) + ε2(t), (3)

where Fa and Tea are determined by Eq. (2) with appropriate constants Aj , and
ε1(t) and ε2(t) are the corresponding anomaly series (i.e. the residuals in respect to
the mean annual cycle, respectively). One can expect that the influence of growing
CO2 concentration is hidden mainly in the residuals.

In order to get an idea about the variability range, the annual deviations of F
from the sample mean value 231.2 Wm−2 are shown in Fig. 1b.
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Fig. 1. (a) Series of 5-day mean values for the OLR and Te during 1981–1990; (b) annual OLR
deviations from the mean 231.2 Wm−2 during 1975–1999; the value for 1978 is interpolated.

3. QUANTIFYING NON-STATIONARITY

A particular value of the time series X(t) at the time instant t can be
presented by

X(t) =
∞∑

i=0

x(t− i), (4)

where x(t) = X(t) − X(t − 1) is the corresponding increment during the time
step t.

The temporal variability of the non-stationary series X(t) can be investigated
on the basis of the growth rate of variance for the increment

X(t + τ)−X(t) = x(t + 1) + . . . + x(t + τ), (5)

where t = 0, 1, . . . , T − τ , as a function of τ . The properties of this function are
determined by the increments x(t).

The necessary function, representing this growth rate (structure function or
variogram) can be written as

D(τ) =
1

T − τ

T−τ∑

i=1

(X(i + τ)−X(i))2

=
1

T − τ

T−τ∑

i=1

(xi+1 + . . . + xi+τ )2

= τ [C(0) + 2
τ−1∑

i=1

(1− i/τ)C(i)], (6)

where C(i) stands for the auto-covariation of the increments x(t) at the lag i.
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Expression (6) shows that the growth rate for D(τ) depends on the correlations
between the increments (over the range 1 . . . (τ − 1)). It is customary to estimate it
by means of a special Hurst exponent H [8] defined by the relation D(τ) ∝ τ2H ,
where 0 < H < 1. The value of H determines some important classes among the
non-stationary series.
1. If C(i) = 0 for all i > 0, then Eq. (6) shows that the growth rate for D(τ)

is proportional to τ , and consequently H = 0.5. The process with independent
identically distributed increments (random walk) is the best known example
among those having H = 0.5.

2. If positive correlations are dominating in the term
∑τ−1

i=1 (1 − i/τ)C(i), the
function D(τ) has a faster growth rate than in the previous case. Positively
correlated increments tend to have the same sign, so the process tends to increase
in the future if it has had an increasing tendency in the past. And, vice versa, it
has a tendency to decrease in the future if it has had a decreasing tendency in
the past. Such a feature is called persistence (P) [8]. Physically, a persistent
system is going to increase the deviation, thus a positive feedback generally
dominates in the system that governs the time series. It is convenient to consider
the processes, where the growth rate is proportional to τ2H and where 0.5 <
H < 1 is constant, over some (limited or infinite) interval of τ .

3. If over some interval τ0 < τ < τ1 the function D(τ) is growing more slowly
than in case (1) so that D(τ) ∝ τ2H , where 0< H < 0.5, negative correlations
dominate in the system. Being negatively correlated, the increments tend to have
opposite signs, so that the process has a tendency to decrease in the future if it
has had an increasing tendency in the past and vice versa. The feature is
called anti-persistence (AP). It expresses a tendency of the values of increments
to compensate each other to prevent for the process from blowing up too
fast. Such a system tends to eliminate deviations showing a negative feedback
in aggregate.

4. If H = 0, the necessary condition for stationarity of X(t) is satisfied [11].
To get the actual estimate, the exponent H is fitted to the change of D(τ) over

some finite interval for the time lag τ (τ0 ≤ τ ≤ τ1) by means of the linear equation

log D(τ) = 2H log τ + K, (7)

where K is a constant.
The latter has no significance in the current study.
The growth rate for D(τ) can be calculated for every sample of the time series.

The rate can be quantified by H over the periods where it is approximately linear.
The results can be characterized by means of the feature of persistency (AP or P)
in the same way as for theoretical models. The scheme enables us to estimate the
sign of the feedback on the basis of the assigned persistency property (as a function
of the time scale). A similar estimation has been carried out for various surface air
temperature series in [10].

Studies of the variability of the global radiation budget have shown that the
annual cycle dominates in its variability. This means that the same cycle should
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have a significant influence on any global variable describing the state of the
Earth’s climate system. Three examples about the growth rate of D(τ) for simple
theoretical series to explain the influence of combining an annual cycle with a
certain noise series will be presented in the form

X1(t) = Fa(t) + z(t), t = 1, . . . , 262144, (8)

where Fa stands for the periodic (see Eqs. (2) and (3)) part and z is specified
separately in every case.

A periodic series cannot be a mono-scaling one in terms of H . A scale break
should occur approximately if τ grows larger than a half of the period. Our main
interest is whether the condition H > 0.5 may be satisfied for these combinations
where τ becomes sufficiently large. It is easy to show that the growth rate for Fa

shows AP only if τ grows for a sufficiently long period in comparison with the
main period.

Figure 2a shows the growth rate of D(τ) for three combinations involving Fa.
Let us consider first the case z(t) = 0.0004t. It represents the situation where a
linear trend takes the lead over a long-range stationarity of a periodic function for
large values of τ .

One can imagine it considering a growing influence of the CO2 forcing (the
second term) in comparison with a variable, containing a determined annual cycle
with A1 = 4.55. The trend may be caused by the influence of growing CO2

concentration in the earth’s atmosphere. The numerical value of the slope (0.0004)
appears to be quite arbitrary. It is not fitted for the radiative effect of the the daily
increase of the CO2 concentration. No such fitting is necessary, because the current
example presents a sum of two independent processes. Such a situation is not likely
in the Earth’s atmosphere.

The growth rate of D(τ) in this example explains the scale dependence of H ,
that is, the case when the feedback of a real system can also be scale dependent.

Fig. 2. The growth rate of D(τ): (a) for Fa (OLR annual cycle) plus some function; (b) for
the deviations of OLR and Te from their mean annual cycle.
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The function D(τ) grows rapidly (H ∼= 1) for 1 < τ < 128 days due to one
phase of the annual course. The scale break takes place for a certain τ , because the
covariations between the increments start turning negative if the increment range
exceeds a quarter of the main period (see Eq. (6)). For 128 < τ < 16384, the
function D(τ) keeps undulating around the reached value. The undulation is caused
by the use of a sparse grid; however, a more accurate course is not important for the
current study. The trend is still low to dominate in the behaviour of D(τ) during
that τ interval (128 < τ < 16384), and the approximate value for H would be
zero.

The value of τ , at which the function D(τ) starts another rapid growth, enables
us to determine how “high” should reach the trend (in comparison with the annual
amplitude of Fa(t)) in order to evoke a scale break (in terms of H). If t = 16384
the “height” of the trend has reached 6.55> 4.55 = |A1| and for even larger values
of τ we have H ∼= 1 again. The trend obviously remains dominating over even
longer scales.

This example explains two important issues connected to the quantification of
non-stationarity in time series of the type “determined cycle + trend”. There are two
essential scale breaks: the half-length of the cycle and the interval after which the
trend “height” becomes equal to the amplitude of the cycle. The first break leads
from the initial rapid growth based non-stationary regime to a (quasi)stationary
one due to the stabilizing influence of the annual cycle. The second scale break
leads from the (quasi)stationarity back to a “new” non-stationary behaviour due to
the fact that the “height” of the trend becomes larger than the annual amplitude
in Eq. (8) and the trend term starts dominating the variance growth. Thus, this
example reveals that a large annual amplitude presents an important threshold in
estimates of the persistence in the series with various outer forcing.

Two other examples represented in Fig. 2 are of the type Fa + white noise. Their
difference is in the standard deviation: σ1 = 0.1A1 and σ2 = A1, respectively.

The examples show the difference in the growth rate of D(τ) due to the
different variance of the particular noise. In the case of low variance, periodic
undulation dominates the behaviour of D(τ). This leads to H ∼= 0 for τ > 128 on
aggregate.

If the standard deviation of the noise is comparable with the amplitude of Fa,
the influence of the noise totally shades the effect of periodicity in Fa.

In the actual series of the OLR, the annual amplitude is evidently higher than
any other possible component of the OLR (Fig. 1a). Thus it would be interesting
to estimate the growth rate for the deviations Fr(t) = F (t)− Fa(t) (i.e deviations
from the smooth annual cycle given by Eq. (3)). In principle, their growth rate may
be considerably different from that of Fa. In the present section the difference in
terms of H is crucial.

7



4. VARIATION OF D(τ) IN THE OLR (PENTAD) SERIES

Figure 2b shows the growth rate of D(τ) for two series of deviation (Fr). The
following features can be observed.
1. Both curves of D(τ) have qualitatively similar shape. This is due to the

functional relationship between F and Te.
2. A tendency of decrease in D(τ), when the increment range approaches 14 years

(i.e the term Log2(τ) approaches 10) may be caused by the short data record.
3. The growth rate appears to be very low in comparison to the one, produced by

the annual cycle for small values of τ . This means that the actual non-periodic
influence to the global OLR flux density is weak, leading also to a low value
of the corresponding exponent H . A similar tendency to saturation has been
noticed earlier [10,12] in various air temperature time series. This result supports
the assumption about domination of the negative feedback in the climate system
for longer time scales than half a year. The latter criterion is determined by
the length of the cycle of sign changes between the covariations in Eq. ( 6). An
approximate value of the scale break can be found in Fig. 2a as the increment
range, at which the rapid growth in D(τ) ends.

5. CONCLUSIONS

The aim of the paper was to estimate the sign of the cumulative feedback of
the earth’s climate system on the basis of the global average OLR record. The
AVHRR-based series containing 5-day mean values was used for that purpose. The
growth rate of the structure function was calculated over the increment range from
5 days to 14 years.

The OLR record has a remarkably strong annual cycle. Its annual amplitude
exceeds the standard deviation of the residual variability. Thus the half length of the
annual cycle determines the scale break caused by the covariations, having periodic
changes of sign while τ increases. The break leads to a considerable decrease in
the further growth rate of D(τ). The resulting very slow growth also produces a
low value for H ∼= 0, indicating the domination of negative feedback in the system,
generating the time series [8].

The global average OLR flux density characterizes the response of the earth
climate system to the outer influence. Thus its variability involves also the growing
influence of the increase of the CO2 concentration in the atmosphere. Figure 2a
shows that such an increase would dominate only if two conditions were satisfied:
(1) the concentration of CO2 continues to increase and (2) its effect (to the OLR)
remains statistically independent of the remaining variability of the climate system.
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Ühest Maa kliimasüsteemi tagasiside
märgi hindamise võimalusest

Olavi Kärner

Mittestatsionaarse aegrea muudu teise momendi kasvukiirust muudu ulatuse
funktsioonina saab kasutada seda aegrida genereerinud füüsikalise süsteemi tagasi-
side märgi hindamiseks. Artiklis on süsteemist aluspind + atmosfäär lahkuva
soojuskiirguse voo 26 aasta pikkuse aegrea analüüsi abil näidatud, et kui reas on
domineeriv periood, siis selle amplituud osutub tõkkeks, mis varjutab teised või-
malikud mõjutused. Esitatud analüüs on rakendatav, kui on tarvis hinnata CO2

kontsentratsiooni kasvu mõju kliimasüsteemi arengule.
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