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Abstract Geographically distributed predictions of future climate, obtained through climate models, are 
widely used in hydrology and many other disciplines, typically without assessing their reliability. Here we 
compare the output of various models to temperature and precipitation observations from eight stations with 
long (over 100 years) records from around the globe. The results show that models perform poorly, even at a 
climatic (30-year) scale. Thus local model projections cannot be credible, whereas a common argument that 
models can perform better at larger spatial scales is unsupported. 
Key words climate models; general circulation models; falsifiability; climate change; Hurst-Kolmogorov climate 

De la crédibilité des prévisions climatiques  
Résumé Des prévisions distribuées dans l’espace du climat futur, obtenues à l’aide de modèles climatiques, 
sont largement utilisées en hydrologie et dans de nombreuses autres disciplines, en général sans évaluation 
de leur confiance. Nous comparons ici les sorties de plusieurs modèles aux observations de température et de 
précipitation de huit stations réparties sur la planète qui disposent de longues chroniques (plus de 100 ans). 
Les résultats montrent que les modèles ont de faibles performances, y compris à une échelle climatique 
(30 ans). Les projections locales des modélisations ne peuvent donc pas être crédibles, alors que l’argument 
courant selon lequel les modèles ont de meilleures performances à des échelles spatiales plus larges n’est pas 
vérifié. 
Mots clefs modèles climatiques; modèles de circulation générale; falsifiabilité; changement climatique;  
climat de Hurst-Kolmogorov 
 
 
INTRODUCTION 

Hydrologists are very attentive in the development and use of mathematical models for hydro-
logical processes, particularly if these models are to be applied for prediction of future events. 
They use several indices to assess the prediction skill of their models, and they evaluate the indices 
not only in the model calibration period, but also in a separate validation period, whose data were 
not used in the calibration (the split-sample technique, Klemeš, 1986). Long prediction horizons, 
such as 50 or 100 years, are very common in engineering hydrological applications, as these are 
the lifetime periods of major engineering works. Traditionally, in such cases, deterministic models 
and approaches, which are good for prediction horizons of some hours to a few days, are replaced 
by probabilistic and stochastic approaches. To the authors’ knowledge, no attempt to cast long-
term hydrological predictions based on deterministic hydrological approaches has ever been made.  
 On the other hand, in recent decades, numerous hydrological studies have attempted to cast 
projections of the impacts of hypothesized anthropogenic climate change on freshwater resources 
and their management, adaptation and vulnerabilities (Kundzewicz et al., 2008). All these studies 
are essentially based on the explicit or tacit assumptions that climate is deterministically predict-
able in the long term and that the climate models (or general circulation models, GCMs) can give 
credible predictions of future climate for horizons of 50, 100 or more years (e.g. Alcamo et al., 
2007). Less effort has been put into falsifying or verifying such assumptions. However, the wide-
spread use of statistical downscaling methods in hydrological studies may be viewed as an indirect 
falsification of the reliability of climatic models: for this downscaling refers in essence to tech-
niques that modify the climate model outputs in an area of interest in order to reduce their large 
departures from historical observations in the area, rather than techniques to scale down the 
coarse-gridded GCM outputs to finer scales. 
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 As falsifiability is an essential element of science (Popper, 1983), the scientific basis of 
climatic predictions may be disputed on the grounds that they are not falsifiable or verifiable at 
present. Such a critique may arise from the argument that we need to wait several decades before 
we will know how reliable the predictions may be. However, we maintain that elements of 
falsifiability already exist. These should be traced in at least two directions: in the very structure 
and core hypotheses of GCMs and the related modelling practices, and in the agreement of model 
results in past periods with reality (hindcasting or retrodiction).  
 In terms of the first direction, several studies have tried to shed light on GCM inconsistencies 
and the resulting uncertainty (the most recent being Frank, 2008). However, we think that the 
following passage from Kerr (2008) is indicative of the state of the art in GCMs. Kerr’s article 
refers to the study by Keenlyside et al. (2008), who explained the observed constancy (or slight 
decrease) of the global temperature (instead of the projected global warming) in the last decade, 
using real sea-surface temperatures as initial conditions (and with this they predict that in the next 
decade European and North American surface temperatures will decrease slightly):  
“To take account of such ocean-driven natural variability, Keenlyside and his colleagues began 
their model’s forecasting runs by giving the model’s oceans the actual sea surface temperatures 
measured in the starting year of a simulation. Providing the initial state of the ocean doesn’t make 
much difference when forecasting out a century, so long-range forecasters don’t usually bother. 
But an initial state gives the model a starting point from which to calculate what the oceans will be 
doing a decade hence and therefore what future natural variability might be like”. 
 This reveals a culture in the climatological community that is very different from that in the 
hydrological community. In hydrology and water resources engineering, in real-time simulations 
that are used for future projections in transient systems (in contrast to steady-state simulations), it 
is inconceivable to neglect the initial conditions; likewise, it is inconceivable to claim that a model 
has good prediction skill for half a century ahead but not for a decade ahead. 
 Furthermore, the climatological community focuses on theories and models, whereas the 
hydrological community has greater trust in data. In this respect, here, we focus on the second 
falsifiability path, the testing of GCM performance in reproducing observed past climatic 
behaviours, a path also explored by others (e.g. Douglass et al., 2008). The IPCC Third Assess-
ment Report (TAR; IPCC, 2001) contains comparisons at the global scale, and the IPCC Fourth 
Assessment Report (AR4; IPCC, 2007) extends these comparisons of observed and simulated 
climate to the continental scale; however, these do not offer validation, in the sense described 
above (and are not presented as validation results by IPCC). In our falsifiability framework, the 
TAR models provide a good basis because they have projected future climate starting from 1990. 
Thus, there is an 18-year period for which comparison of model outputs with reality is possible. 
Besides, several TAR model runs include longer past periods with historical inputs. The situation 
is different with AR4 models, but again comparisons with past climate are possible as detailed 
below. The comparisons are done using existing long records of the past. The use of climatic 
records was also recommended by the US National Research Council (2005) in a different context 
(to investigate relationships between regional radiative forcing and climate response). As climate 
is defined to be a long-term average of processes, long time series are necessary to investigate 
whether or not observed climatic trends (more precisely, long-term fluctuations) are captured by 
climatic models. The hydrometeorological time series with the longest observation periods, i.e. 
temperature and precipitation, which also happen to be the most important to hydrology, were 
chosen for the comparison. Records of 100 years or more were retrieved from eight locations 
belonging to different climates worldwide. 
 
 
METHODOLOGY 

The methodology we employed in this study is very simple. We decided to use eight stations (this 
number was dictated by time and resource limitations—the research is not funded). Our criteria for 
the selection of the eight locations were: (a) the distribution of stations in all continents and in dif-
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ferent types of climate; (b) the availability of data on the Internet at a monthly time scale; and 
(c) the existence of long data series (>100 years for both temperature and precipitation) without 
missing data (or with very few missing data, which were filled in with average monthly values). In 
Australia, we were not able to find a station satisfying the data size criterion for both temperature and 
precipitation and we accepted a shorter length of the precipitation record. The study locations are 
shown in Table 1, and their characteristic climatic diagrams are presented in Koutsoyiannis et al. 
(2008b; this is an on-line report with all detailed information supplementary to this paper). An addi-
tional location (Aliartos, Greece) had been studied previously (Koutsoyiannis et al., 2007, 2008a).  
 The next step was to retrieve a number of climatic model outputs for historical periods 
(available on the Internet), which are shown in Table 2. We picked three TAR and three AR4 
models, and one simulation for each model. The selection of simulation runs, which is presented in  
 
 
Table 1 Study locations and their characteristics.  
Station Climate  Latitude (°) Longitude (°) Altitude (m) Data source 
Albany (USA) Sub-tropical 31.53N 84.13W   60 www.ncdc.noaa.gov/oa/climate/
Athens (Greece) Mediterranean 37.97N 23.72E 107 www.knmi.nl 
Alice Springs (Australia) Semi-arid 23.80S 133.88E 547 www.knmi.nl 
Colfax (USA) Mountainous 39.11N 120.95W 735 www.ncdc.noaa.gov/oa/climate/
Khartoum (Sudan) Arid 15.60N 32.50E 380 www.knmi.nl 
Manaus (Brasil) Tropical   3.17S 60.00W    60 www.knmi.nl 
Masumoto (Japan) Marine 36.20N 138.00E 611 www.knmi.nl 
Vancouver (USA) Mild 45.63N 122.68W   10 www.ncdc.noaa.gov/oa/climate/
 
 
Table 2 Main characteristics of the GCMs used in the study. 
IPCC 
report 

Name Developed by Resolution (°) 
in latitude 
and longitude 

Grid points, 
latitudes × 
longitudes 

TAR ECHAM4/OPYC3 Max-Planck-Institute for Meteorology & Deutsches 
Klimarechenzentrum, Hamburg, Germany 

2.8 × 2.8 64 × 128 

TAR CGCM2 Canadian Centre for Climate Modelling and Analysis 3.7 × 3.7 48 × 96 
TAR HadCM3 Hadley Centre for Climate Prediction and Research 2.5 × 3.7 73 × 96 
AR4 CGCM3-T47 Canadian Centre for Climate (as above) 3.7 × 3.7 48 × 96 
AR4 ECHAM5-OM Max-Planck-Institute (as above) 1.9 × 1.9 96 × 192 
AR4 PCM National Center for Atmospheric Research, USA 2.8 × 2.8 64 × 128 
Sources: www.mad.zmaw.de/IPCC_DDC/html/SRES_TAR/; www.mad.zmaw.de/IPCC_DDC/html/SRES_AR4/. 
 
 
Table 3 IPCC scenarios and their relevance to the study. 
 Scenario Characteristics Reason for being appropriate or inappropriate 
TAR ✔ SRES, IS92a Many runs are based on historical GCM 

input information prior to 1989 and 
extended using scenarios for 1990 and 
beyond.  

For such runs, choice of scenario is irrelevant for test 
periods up to 1989; for later periods, there is no 
significant difference between different scenarios for 
the same model.  

AR4 ✘ SRES Various hypothetical scenarios for the 
future. 

Runs start in the 21st century (out of study period). 

 ✘ COMMIT Greenhouse gases fixed at year 2000 
levels. 

Runs start in the 21st century (out of study period). 

 ✘ 1%-2X,  
1%-4X 

Assume a 1%-per-year increase in CO2, 
usually starting at year 1850. 

Results in CO2 being 570 cm3/m3 (ppm) already in 
1920, when in fact it was 379 cm3/m3 in 2005. Actual 
20th century concentrations are required. 

 ✘ PI-cntrl Uses pre-industrial greenhouse gas 
concentrations. 

Actual 20th century concentrations are required. 

 ✔ 20C3M Generated from output of late 19th & 
20th century simulations from coupled 
ocean–atmosphere models, to help 
assess past climate change.  

This is the only AR4 scenario relevant to this study, 
and therefore the outputs of model runs on this 
scenario were used. 

Sources: Leggett et al. (1992); Nakicenovic & Swart (1999); Carter et al. (1999); Hegerl et al. (2003); 
www.mad.zmaw.de/IPCC_DDC/html/SRES_AR4/.  
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Table 3, was based on the criterion that it cover past periods, rather than merely referring to future. 
As Table 3 indicates, the selection of scenario does not matter for TAR models; therefore, we 
randomly chose SRES A2 and simulations covering the 20th century with historical GCM input 
information prior to 1989; there is an exception in ECHAM, whose simulations with SRES do not 
cover the 20th century but for which a run is nevertheless available for the scenario IS92a starting 
at 1860. Of the AR4 scenarios, only 20C3M is appropriate. 
 The next step was to extract the monthly time series for the four grid points closest to each of 
the eight examined stations (the specific grid depends on the model) and to estimate a modelled 
time series for each station. A technique for making inferences at small regional scales from 
coarser climate model scales based on grid points nearest to the area of interest was proposed by 
Georgakakos (2003). However, this technique aims to downscale model information to finer 
spatial scales, which is different from the falsification/validation scope of the present study, as 
explained below. Nonetheless, we kept the idea of using the nearest grid points for making 
inferences on the location of interest. Specifically, we used the time series of all four nearest grid 
points and produced the modelled time series for the station location based on the best linear 
unbiased estimation (BLUE; e.g. Kitanidis, 1993), i.e. by optimizing the weight coefficients λ1, λ2, 
λ3, λ4 (assuming positive values for physical consistency and λ1 + λ2 + λ3 + λ4 = 1) in a linear 
relationship x̃ = λ1x1 + λ2x2 + λ3x3 + λ4x4, where x ̃ is the best linear estimate of the historical value x 
(i.e. x̃ – x is the prediction error), and x1, x2, x3, x4 are the model outputs for the four closest grid 
points. Optimization is done on the basis of the coefficient of efficiency, which is the main 
comparison statistic in this study, defined as Eff = 1 – e2/σ2, where e2 is the mean square error in 
prediction and σ2 is the variance of historical series. Given that at each point the historical variance 
is constant, maximizing efficiency is precisely equivalent to minimizing the mean square error (as 
in the standard BLUE method). Thus, we let the modelled time series fit the historical monthly 
time series as closely as possible. Other techniques with fixed weights, based for instance on the 
distances of the study location to each grid point, would obviously produce larger prediction errors 
and smaller efficiencies than the BLUE technique. Interestingly, in some of the cases (particularly 
in temperature), the resulted weights were zero for three out of the four grid points and one for the 
fourth point, which means that one grid point (i.e. four-point combination with weights 0, 0, 0, 1) 
was more representative for the study location than any linear combination of the four grid points.  
 The final step was the comparison of the historical with modelled time series. The com-
parisons were made graphically and using various statistical indicators, as detailed below. Three 
scales of comparison were used: the monthly, the annual and the climatic, where the latter was 
assumed to be the 30-year (moving) average. 
 
 
JUSTIFICATION OF THE METHODOLOGY 

An essential element of our approach is the use of directly observed time series instead of any type 
of processed (e.g. gridded) data sets. This is justified by the falsifiability scope of the study, 
according to which, one of the two objects to be compared should be an observable quantity and 
the other a modelled quantity. Thus, we preclude any type of manipulation of observed data that 
could lead to an artificial agreement with models. Unavoidably, this leads to comparisons on a 
point basis rather than on an areal basis, which requires the estimation of a modelled time series at 
the chosen point from a gridded output data set. This is much more feasible and natural than the 
opposite way (estimating an “observed” time series at a GCM’s grid point), or than an areal 
comparison (aggregating observed time series to produce an areal average and then aggregating 
GCM gridded time series on the same area), for it is difficult or infeasible to find long historical 
time series at many locations on the area, in order to combine them to produce either a spatial 
interpolation to a GCM grid point or a spatial integration at a given area. The difficulty in doing 
such spatial interpolations or integrations from observed data is reflected, for instance, in the fact 
that the Climatic Research Unit (CRU), which systematically monitors global temperature on a 
monthly basis using observations from 3000 stations (www.cru.uea.ac.uk/cru/ data/ temperature/), 
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Fig. 1 IPCC projected changes in (left) temperature and (right) precipitation, for 2080–2099 relative to 
1980–1999 for the SRES scenario A1B (Figs 10.8, middle right panel, and 10.12, upper left panel, 
respectively, of Meehl et al., 2007; stippled regions in the precipitation map indicate consistency of at 
least 80% of models in the sign of change). 

 
 

 
Fig. 2 Land and sea (blended) temperature departures from the 1961–1990 mean in May 2008 
(US National Climatic Data Center, www.ncdc.noaa.gov/oa/climate/research/2008/may/global.html). 

 
 
has avoided providing temperature time series on any spatial basis and, instead, provides only the 
temperature departures from the 1961–1990 mean (more commonly referred to as “anomalies”).  
 It is very easy and natural to perform spatial interpolation of the GCM outputs. For this 
purpose we have chosen the BLUE technique as it is the one that makes the error (departure of 
observation from model) as small as possible. This technique is commonly used even in “rough” 
random fields and, apparently, it is even more appropriate for the rather smooth temperature and 
precipitation fields of GCM outputs, particularly at the climatic time scale. Figure 1 shows that 
GCM output temperature and precipitation fields at the climatic scales are quite smooth in space. 
This smoothness extends also to observed temperature fields at time scales as fine as monthly 
(Fig. 2). Apparently, the BLUE interpolation is more accurate for sites in flat terrain, whereas in 
mountainous terrain the method cannot capture variations due to orographic effects. Even in the 
latter cases, BLUE is appropriate at least for the climatic scales, where random errors should be 
smoothed out. While BLUE is by definition unbiased, the contingency of bias cannot be excluded, 
for instance in a location at a very high altitude with decreased temperature due to altitude. For 
that reason, the comparisons of observed and modelled series are done not only in terms of the 
coefficient of efficiency, which is affected by the presence of bias, but also in terms of the corre-
lation coefficient, which by definition removes the effect of bias.  
 Another possible objection could be that the performance of GCMs on the point basis is 
expected to be low because of the “noise” of local (spatial or temporal) weather conditions, 
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whereas the performance should be higher at large spatial scales. This is implied, for instance, in 
Randall et al. (2007), where it is stated that GCMs provide credible quantitative estimates of future 
climate change, particularly at continental scales and above, and that the estimates are more 
confident for temperature than for other climatic variables (e.g. precipitation). However (see Fig. 1 
and IPCC, 2007), geographically distributed projections are provided, and not only continental or 
global-scale projections. These geographically distributed data are then used, after downscaling, 
by many scientists from many disciplines to project the impacts of climate change onto any type of 
natural process and human activity, and at any spatial scale (not only at continental scales and 
above). Two questions then arise: (1) Can the continental or global climatic projections be credible 
if the distributed information, from which the aggregated information is derived, is not? (2) Are 
geographically distributed projections credible enough to be used in further studies?  
 The common answer to the first question is positive. The logic behind it is a premise that 
atmospheric phenomena consist of two components: “climate”, i.e. a low frequency component, 
and a high frequency “noise”. Likewise, in space, there is “climate” and local “micro-climate”. 
The argument is then that GCMs can faithfully represent the climate at very large scales, although 
they may fail on “noise” and “micro-climate”, despite the fact that GCMs primarily model the 
“noise”, since they are numerical prediction models integrating differential equations at small time 
steps (Edwards, 2001). Koutsoyiannis & Montanari (2007) criticized this dichotomous logic, 
giving emphasis to the continuity of stochastic descriptions on a spectrum of scales with no 
specific scale dominating. This is manifested by the Hurst behaviour of hydroclimatic processes, 
herein referred to as Hurst-Kolmogorov (HK) climate, after Hurst (1951) who studied it in natural 
processes and Kolmogorov (1940) who devised its stochastic representation as a mathematical tool 
for the research of turbulence (see also Shiryaev, 1989; Koutsoyiannis & Cohn, 2008). 
Koutsoyiannis & Montanari, as well as Koutsoyiannis (2003, 2005, 2006a,b) and Koutsoyiannis et 
al. (2007) have provided empirical evidence and theoretical support of the HK behaviour of 
climate, and have shown that climatic variability is very much higher in HK processes than in 
purely random or Markov-type processes. Specifically, in a HK climate, the uncertainty at a 
climatic (30-year) scale proves to be only slightly lower than that at the annual one (Koutsoyiannis 
et al., 2007), in contrast to the classical approach, which yields significant reduction as we proceed 
from the annual to the climatic scale and justifies different perception of climatic and finer scale 
views of processes. Furthermore, Koutsoyiannis (2006b) has demonstrated, using a toy model with 
fully known simplified deterministic dynamics capable of producing a HK climate, that even slight 
perturbations in initial conditions produce very high departures, not only at a fine time scale but 
also (and mainly) at the climatic time scale. Such a result is in line with Collins (2002), who used a 
GCM (HadCM3) and, assuming this to be a “perfect” model, concluded that the climate 
predictability is likely to be severely limited by chaotic error growth. Thus, we think that the 
commonly assumed positive answer to the first question is unsupported.  
 Yet, the focus of this paper is the second question, namely the credibility of the geo-
graphically distributed representation of climate by GCMs. We must clarify that the methodology 
we propose for this testing is not “downscaling” in the sense that is commonly attributed to this 
term. Statistical downscaling is in fact a technique to utilize the available local data series to adapt 
(correct) climate model outputs so as to agree with observations. This typically involves the 
establishment (fitting) of a statistical relationship between GCM outputs (predictors) and obser-
vational data (e.g. Heyen et al., 1996; Wetterhall et al., 2005).  
 Our falsification/validation framework merely involves spatial interpolation of the GCM 
output fields to infer their values at the points of interest. For this interpolation we used the local 
observations only to estimate the optimal weights. We do not propose this technique as a down-
scaling approach. Rather, it is a step prior to downscaling, necessary to justify whether down-
scaling is meaningful or pointless. In the case that the GCM results are invalidated against obser-
vations at the climatic scale, there is no meaning to proceeding with further analyses. As discussed 
above, the smoothness of the given fields justifies the reliability of interpolation. This is further 
demonstrated with an example, which shows that four neighbouring grid points (or even three) are  
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Fig. 3 Interpolated vs given GCM temperature and precipitation at a grid point (see text). 
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Fig. 4 Plots of 30-year moving average time series for temperature (departures from historical mean; 
left) and precipitation (relative departures from historical mean; right). 
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Fig. 5 Plots of observed and modelled annual (doted lines) and 30-year moving average (continuous 
lines) temperature time series at Albany (left: AR4 models; right: TAR models). 



D. Koutsoyiannis et al. 
 

 
 
Copyright © 2008 IAHS Press  

678 

enough to provide a sufficient interpolation. The example refers to the four grid points closest to 
the station Albany for model ECHAM5-OM and scenario 20C3M, whose data were used next in 
the comparisons with observed data. The temperature and precipitation time series of one of the 
four points were assumed unknown and estimated from the time series of the other three points, 
using the BLUE technique described above (but with three weights). As shown in Fig. 3, the 
agreement of interpolated with given time series is impressively good, particularly for temperature 
(coefficients of efficiency 0.99 and 0.91 for temperature and precipitation, respectively). A fortiori, 
with four points instead of three, the agreement would be even better. 
 
 
LONG-TERM VARIABILITY OF HISTORICAL TIME SERIES 

All examined long records exhibit large over-year variability (i.e. long-term fluctuations), with no 
systematic signatures across the different locations/climates. This is clearly illustrated in Fig. 4, 
where long excursions from overall historical means are observed in almost all climatic (30-year 
moving average) series. The 30-year average temperature departs up to ±1°C from the mean of the 
entire historical period, while the 30-year average precipitation departs up to about ±20% from the 
historical mean. These excursions demonstrate the large variability at long time scales, which is an 
essential element for our testing framework: indeed, it is vital to evaluate whether the modelled 
series are able to reproduce the observed over-year “trends”, which would be a powerful indicator 
of their potential to generate realistic climatic behaviours in their future projections. 
 A well-recognized metric of long-term fluctuations is the Hurst coefficient (H), which is 
estimated for the annual time scale and longer (Koutsoyiannis, 2003). All records but two have 
Hurst coefficients larger than 0.50, i.e. 0.72–0.93 for temperature and 0.56–0.86 for precipitation 
(see Fig. 6 and detailed statistics in Koutsoyiannis et al., 2008). The two exceptions are the pre-
cipitation time series of Albany and Athens, in which the Hurst coefficient is around 0.50. One is 
reminded that the value 0.50 corresponds to time independent processes and the value 1.0 to fully 
dependent ones. These results, based on long observed time series, do not confirm earlier studies 
claiming that the Hurst coefficient of temperature in continental areas is 0.5, which would imply 
temporal independence of continental climatic processes (Blender & Fraedrich, 2003; Fraedrich & 
Blender, 2003); this was also disputed in a discussion by Bunde et al. (2004), who found values 
0.6–0.7, whereas, more recently, Alvarez-Ramirez et al. (2008) estimated even higher values in 
some periods. The three continental stations in our study, i.e. Alice Springs, Manaus and 
Khartoum, gave Hurst coefficients for temperature equal to 0.72, 0.89 and 0.90, respectively.  
 
 
RESULTS 

For each study location, we evaluated the proximity of the modelled and observed time series by 
means of various statistical indicators at the monthly, annual and 30-year moving average 
(climatic) time scales, as well as through graphical inspections. Two global performance indices 
were used for all scales, namely the coefficient of efficiency and the correlation coefficient (where 
the latter removes the effect of bias). Moreover, at all scales, we provided comparisons between 
the observed and modelled average and standard deviation (the former is obviously the same at all 
scales). In addition, in the annual time series, we calculated and compared the first-order auto-
correlation coefficient and the Hurst coefficient, whereas, at the climatic scale, we also compared 
three fluctuation indices. These refer to: (a) the change of 30-year moving average temperature or 
precipitation in the 20th century (which is the common simulation period for all models except 
HadCM3-A2), calculated as the difference of 30-year moving averages centred at 1985 and 1915; 
(b) the change between the first and last year of each time series; and (c) the maximum fluctuation 
across the entire period. The latter is defined to be the difference of maximum minus minimum 
observed or simulated climatic values, where a positive sign indicates that the minimum value 
precedes (in time) the maximum (positive trend), and a negative sign indicates the opposite. For 
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the TAR models and the annual scale, we used three periods of comparison, i.e. the entire period, 
the period before 1989 (with historical GCM inputs) and the period after 1989 (with projected 
inputs and outputs). In addition, we plotted the annual and 30-year moving average time series, 
separately for the AR4 and TAR models. A representative example of comparisons of the 
temperature series at Albany is shown in Tables 4–6 and Fig. 5, while the results of all analyses 
(tabulated and graphical) are given in Koutsoyiannis et al. (2008). 
 The performance of the modelled against the observed time series varies across the different 
time scales. At the monthly scale, GCMs generally reproduce the broad climatic behaviours at the 
different locations and the sequence of wet/dry or warm/cold periods, although bias may be 
marked. The average (over the eight sites and six models) correlation coefficient between the 
modelled and observed time series reaches 0.848 for temperature but only 0.331 for precipitation.  
 
 
Table 4 Detailed statistics for observed and modelled temperature time series at Albany at the monthly 
scale. 
 Period Average (°C) St. dev. (°C) Correlation Efficiency 
Observed 1899–2007 19.24 6.78   
CGCM3-A2 1899–2000 18.65 6.31 0.921 0.840 
PCM-20C3M 1899–1999 18.60 6.40 0.922 0.840 
ECHAM5-20C3M 1899–2007 19.03 6.31 0.913 0.829 
CGCM2-A2 1900–2007 18.21 5.41 0.912 0.795 
HadCM3-A2 1950–2007 18.80 7.15 0.930 0.853 
ECHAM4-GG 1899–2007 19.31 6.50 0.931 0.866 
 
 
Table 5 Detailed statistics for observed and modelled temperature time series at Albany at the annual scale. 
 Period Average 

(°C) 
St. dev. 
(°C) 

Correlation Efficiency Autocorrel. Hurst coeff. 

Observed 1899–2007 19.24 0.83    0.660 0.930 
CGCM3-A2 1899–2000 18.65 0.63 –0.215 –1.368 0.306 0.802 
PCM-20C3M 1899–1999 18.60 0.48 0.076 –0.828 0.005 0.511 
ECHAM5-20C3M 1899–2007 19.03 0.77 –0.154 –1.214 0.078 0.577 
CGCM2-A2 1900–2007 18.21 0.54 –0.012 –1.999 0.167 0.562 
 1900–1989 18.15 0.54 0.016 –2.013 0.091  
 1989–2007 18.52 0.45 –0.016 –3.115 0.213  
HadCM3-A2 1950–2007 18.80 0.65 0.053 –0.905 0.232 0.713 
 1950–1989 18.62 0.64 –0.319 –1.631 0.121  
 1989–2007 19.18 0.48 0.142 –1.238 0.045  
ECHAM4-GG 1899–2007 19.31 0.74 0.151 –1.001 0.279 0.803 
 1899–1989 19.12 0.63 –0.072 –0.642 –0.023  
 1989–2007 20.23 0.57 0.031 –9.561 –0.222  
 
 
Table 6 Detailed statistics for observed and modelled temperature time series at Albany on climatic scale. 
 Period St. dev. 

(°C) 
Correla-
tion 

Efficiency DT (20th century) 
(°C) 

DT (all data) 
(°C) 

max DT 
(°C) 

Observed 1899–2007 0.62   –1.09 –0.95 –1.68 
CGCM3-A2 1899–2000 0.21 –0.856 –2.018 0.69 0.69 0.76 
PCM-20C3M 1899–1999 0.06 0.455 –1.149 0.19 0.19 0.22 
ECHAM5-20C3M 1899–2007 0.21 –0.832 –0.833 0.66 0.76 0.84 
CGCM2-A2 1900–2007 0.07 0.110 –2.844 0.03 0.18 0.31 
HadCM3-A2 1950–2007 0.15 –0.107 –4.443  0.41 0.45 
ECHAM4-GG 1899–2007 0.19 –0.452 –0.359 0.40 0.71 0.80 
DT: change of 30-year moving average in indicated period; max DT: difference of maximum minus minimum observed 
or simulated climatic value, with positive (negative) sign for positive (negative) trend. 
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The average efficiency is negative both for precipitation (–0.285) and temperature (–0.116), but 
without Manaus the latter value rises to 0.679. Even in the latter case, the performance is not very 
satisfactory if compared to that of even elementary statistical predictions. For instance, in Albany 
(Table 4), the highest efficiency, provided by ECHAM4-GG, is 0.866. Yet, if we replaced the 
modelled time series with a series of monthly averages (same for all years), the resulting efficiency 
would be 0.930, i.e. considerably higher. The corresponding results for precipitation in Albany are 
–0.168 for the best model (CGCM3-A2) and 0.140 for the elementary statistical method. 
 The performance of GCM time series degrades significantly when moving from the monthly 
to the annual time scale. At the annual scale, the average correlation coefficient between models 
and observations drops to only 0.112 for temperature and to –0.010 for precipitation, while the 
average efficiency is substantially negative for both processes (–8.829 for temperature, –2.043 for 
precipitation). In addition, GCMs underestimate the observed variability (expressed by the 
standard deviation for temperature and the coefficient of variation for precipitation) in 73% of 
cases for temperature and 90% for precipitation (Fig. 6), and the observed Hurst coefficient in 75% 
of cases for temperature and 83% for precipitation (Fig. 7).  
 Finally, at the 30-year climatic time scale, the average correlation coefficient rises slightly to 
0.237 for temperature and remains slightly negative (–0.046) for precipitation; however, the 
average efficiency values become tremendously negative, –81.6 for temperature and –49.5 for 
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Fig. 6 Modelled vs observed standard deviations for temperature (left) and coefficients of variation for 
precipitation (right) time series. 
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Fig. 7 Modelled vs observed Hurst coefficients for temperature (left) and precipitation (right) time 
series. 
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precipitation. This clearly shows that GCMs totally fail to represent the HK-type climate of the 
past 100–140 years, which is characterized by large-scale over-year fluctuations (i.e. successions 
of negative and positive “trends”) that are very different from the monotonic trend of climatic 
models. In addition, they fail to reproduce the long-term changes in temperature and precipitation 
(Fig. 8). Remarkably, during the observation period, the 30-year temperature at Vancouver and 
Albany decreased by about 1.5°C, while all models produce an increase of about 0.5°C (Fig. 8, 
lower left). With regard to precipitation, the natural fluctuations are far beyond ranges of the 
modelled time series in the majority of cases (Fig. 8, lower right). 
 The systematically unsatisfactory agreement of modelled and observed time series can have 
four interpretations: (1) the models are poor; (2) the data are poor; (3) the modelled and observed 
time series are not comparable to each other (e.g. there should not be a direct link between 
observations at a point and model outputs at neighbouring grid cells); (4) our calculations and 
comparisons are wrong. The last possibility cannot be excluded in principle, but since all data 
series we used (observations and models) are available on the Internet, possible errors will be 
spotted. Interpretation (3) is not plausible in our opinion, for reasons explained in the section 
“Justification of the methodology”; in other words, we think that this interpretation is more or less 
a specific case of (1). Interpretation (2) has its merit: observations may be “contaminated”, either 
by random and systematic errors or by changes in local conditions. The latter is expected par-
ticularly in stations in urban areas, where in recent decades the increasing heat island effect may 
have distorted the natural character of the time series and introduced artificial increasing trends in 
both precipitation and temperature (Huang et al., 2008). However, the heat island effect, if present, 
would in fact improve rather than worsen the agreement between models and observations  
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Fig. 8 Change of 30-year moving average temperature (upper left) and precipitation (upper right) in the 
20th century and maximum fluctuation of 30-year moving average temperature (lower left), and 
precipitation (lower right) within the entire period. 
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(without it, the temperature in the most recent years would be lower, while GCMs predict a rise of 
temperature). Other random and systematic errors that may contaminate the measurements are not 
expected to be present in all examined stations. For all these reasons, we think that interpretation 
(1), i.e. that models are (intrinsically and perhaps inescapably) poor is the most plausible.  
 
 
CONCLUDING REMARKS 

The current scientific scene is dominated by the hypothesis that climate is deterministically 
predictable, combined with the belief that GCMs suitably implement this hypothesis and produce 
credible projections of future climate. As this hypothesis and this belief are widely accepted in a 
variety of scientific disciplines, including hydrology and water resources science, technology and 
management, and are used as a foundation upon which diverse impact studies are built, there is an 
urgent need to assess the credibility of climatic models. To date, the required attention has not 
been paid and many studies have built upon climatic projections without such prior assessment. 
This study compares observed, long climatic time series with GCM-produced time series in past 
periods in an attempt to trace elements of falsifiability, which is an important concept in science 
(according to Popper, 1983, “[a] statement (a theory, a conjecture) has the status of belonging to 
the empirical sciences if and only if it is falsifiable”). 
 In all examined cases, GCMs generally reproduce the broad climatic behaviours at different 
geographical locations and the sequence of wet/dry or warm/cold periods at a monthly scale. 
Specifically, the correlation of modelled time series with historical ones is fair and the resulting 
coefficient of efficiency seems satisfactory. However, where tested, replacement of the modelled 
time series with a series of monthly averages (same for all years) resulted in higher efficiency.  
 At the annual and the climatic (30-year) scales, GCM interpolated series are irrelevant to 
reality. GCMs do not reproduce natural over-year fluctuations and, generally, underestimate the 
variance and the Hurst coefficient of the observed series. Even worse, when the GCM time series 
imply a Hurst coefficient greater than 0.5, this results from a monotonic trend, whereas in 
historical data the high values of the Hurst coefficient are a result of large-scale over-year fluctua-
tions (i.e. successions of upward and downward “trends”). The huge negative values of coef-
ficients of efficiency show that model predictions are much poorer than an elementary prediction 
based on the time average. This makes future climate projections at the examined locations not 
credible. Whether or not this conclusion extends to other locations requires expansion of the study, 
which we have planned. However, the poor GCM performance in all eight locations examined in 
this study allows little hope, if any. An argument that the poor performance applies merely to the 
point basis of our comparison, whereas aggregation at large spatial scales would show that GCM 
outputs are credible, is an unproved conjecture and, in our opinion, a false one. Our future plan 
also includes a study of this question after refinement and extension of our methodology. 
 None of the examined models proves to be systematically better than any other. In particular, 
AR4 models do not perform better than TAR ones, whereas the concept in AR4 of a scenario 
produced from the outputs of model runs for the 20th century (20C3M) does not serve well the 
requirement for falsifiability. In our opinion, however, the unsatisfactory state of the art in climatic 
(and hydrological) future projections does not reflect a general deadlock in related sciences, but 
only a wrong direction. Causality in climate and hydrology is not sequential and one-to-one but 
rather circular (due to feedbacks) and many-to-many (due to complexity). Such causality can be 
better described in probabilistic and stochastic terms (see Suppes, 1970), rather than in terms of the 
current deterministic climatic models and practices (see also Giorgi, 2005). Probabilistic and 
stochastic approaches should not be confused with current multi-model ensemble climate 
projections (e.g. Tebaldi & Knutti, 2007). A stochastic framework for future climatic uncertainty 
has been studied recently by Koutsoyiannis et al. (2007) in a stationary setting. Arguments that the 
increasing concentration of greenhouse gases causes nonstationarity (Milly et al., 2008) should not 
discourage stochastic descriptions: after all, nonstationarity is clearly a stochastic concept and, 
hence, stochastics is the proper mathematical tool to deal with it. For instance, the synchronized 
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palaeoclimatic data of atmospheric temperature and concentration of greenhouse gases (studied in 
a different context by Soon, 2007) can be utilized to establish a stochastic relationship between the 
two processes and test its significance. However, this will require great caution as it is well known 
that palaeoclimatic data often suffer from quality problems and perhaps unjustified interpretations, 
and thus involve great uncertainty. Possibly, deterministic climate models could also assist in 
establishing such a relationship, which, if proven to be significant, could be incorporated in a 
nonstationary stochastic framework of climatic uncertainty. It is noted, however, that the natural 
hydroclimatic variability (verified from long series of observations and seen in historical 
hydrology studies reviewed by Brázdil & Kundzewicz, 2006) is very large and underestimated by 
classical approaches. Thus, a consistent stochastic approach, under stationary conditions, yields 
uncertainty limits that well enclose current and future hydroclimatic trends projected by GCMs 
coupled with hydrological models (Koutsoyiannis et al., 2007).  
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