SECOND EDITION

Understanding Environmental Health

How We Live in the World

Chapter 7 Living in the World We've Made

Background image © Kang Khoon Seang/ShutterStock, Inc. Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company www.jblearning.com

Nancy Irwin Maxwell

7.1 The "Metabolism" of Communities

- 7.2 Management of Sewage Wastes
- 7.3 Drinking Water: Public Systems and Private Wells
- 7.4 Solid Waste and its Management
- 7.5 Urban Settings in Less Developed Countries
- 7.6 The Built Environment in More Developed Countries
- 7.7 Lifestyles: Things We Do, Things We Use
- 7.7 Sharing Global Impacts and Resources

Urban Metabolism in the 19th Century Community Metabolism Today

Urban metabolism in the 19th century

- "Metabolism" of a community¹: water supply, sewage, trash
- 19th century
 - Privy pits & cesspools
 - Tap water \rightarrow water closet, larger volume of waste
 - Use of water to carry away sewage, at community level
 - Drinking water treatment
- Not until 20th century:
 - Sewage treatment
 - Trash as a large-scale phenomenon

Urban Metabolism in the 19th Century Community Metabolism Today

Community metabolism today

- Three fundamental features:
 - -Unified water supply
 - -Use of potable water to carry away sewage
 - Large quantities of water, sewage, trash; with interconnections among these waste streams
- Municipal wastewater and municipal solid waste
 - -Distinct, yet some overlap in contents \rightarrow

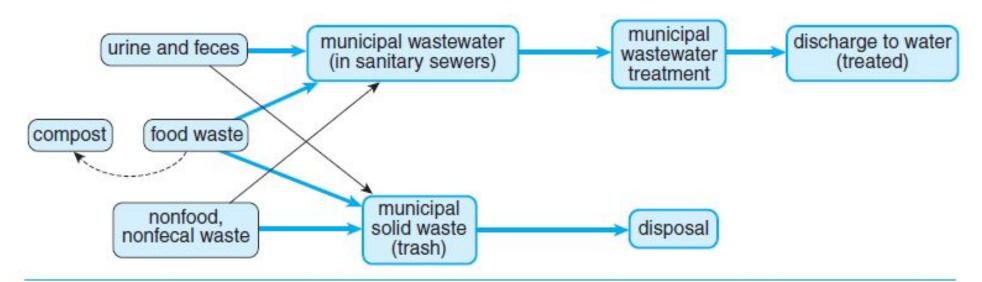


FIGURE 7.2 Contributors to municipal wastewater and municipal solid waste streams.

 Community metabolism today
 Municipal wastewater and storm runoff →

- -Different makeup
- -Constant vs. episodic flow
- Municipal wastewater and industrial wastes $\rightarrow \rightarrow$
 - Industrial wastes discharged directly; or indirectly via municipal wastewater

FIGURE 7.4 Use of combined sewer overflows to handle storm runoff.

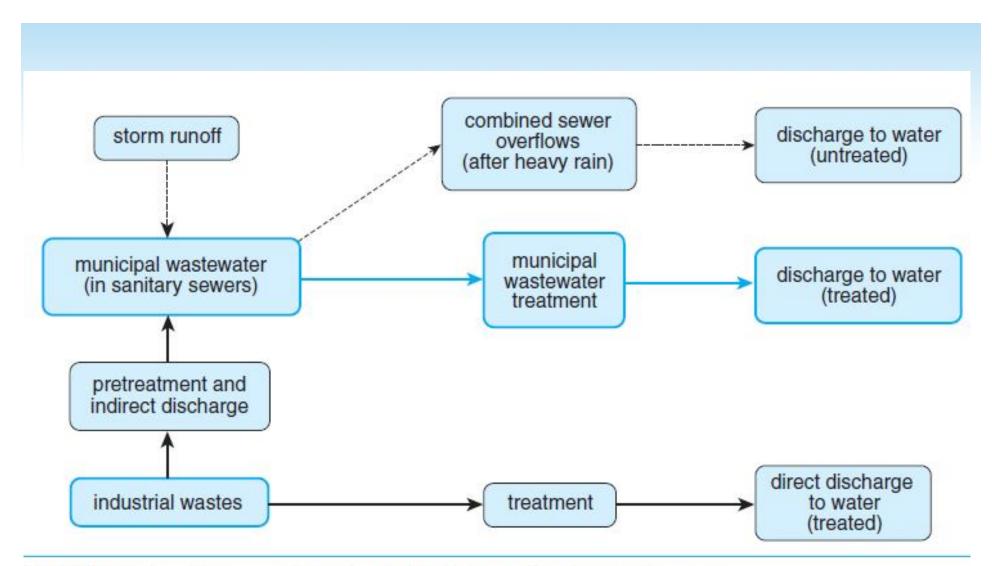
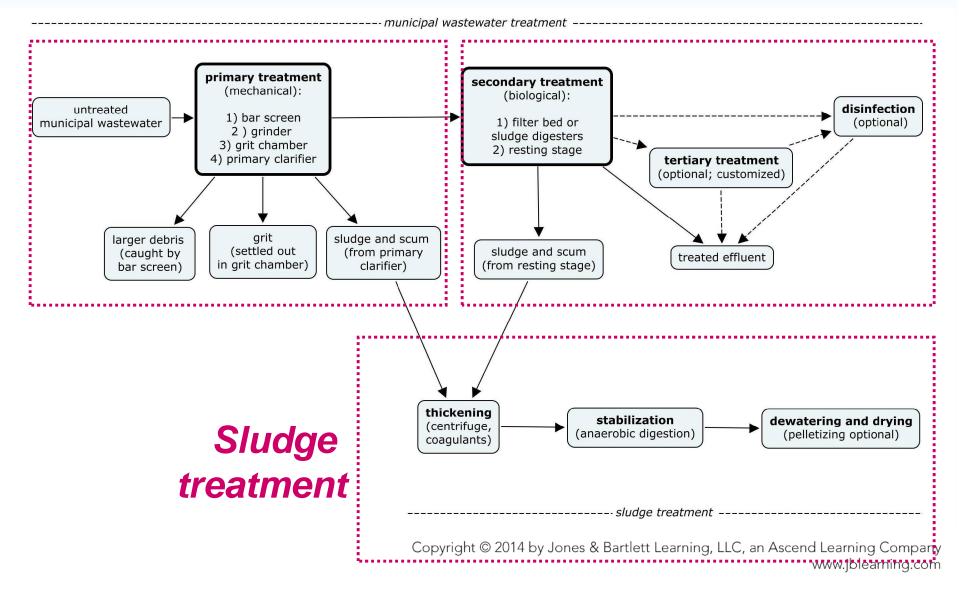


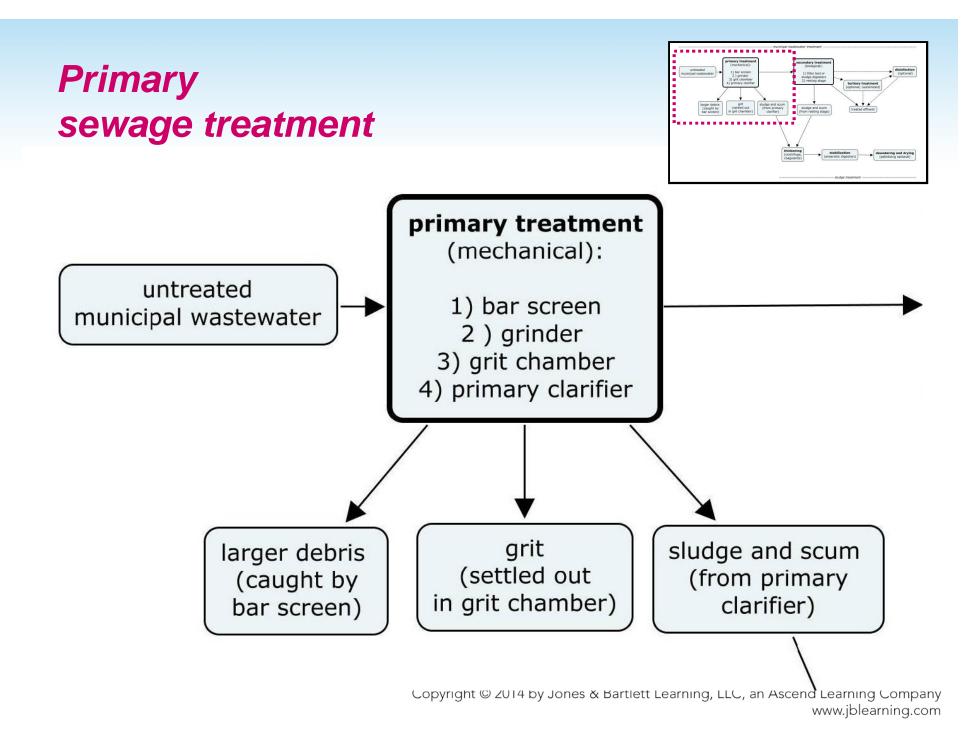
FIGURE 7.5 Direct and indirect discharge of industrial wastes.

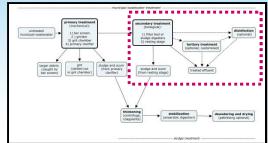
7.1 The "Metabolism" of Communities

7.2 Management of Sewage Wastes

- 7.3 Drinking Water: Public Systems and Private Wells
- 7.4 Solid Waste and its Management
- 7.5 Urban Settings in Less Developed Countries
- 7.6 The Built Environment in More Developed Countries
- 7.7 Lifestyles: Things We Do, Things We Use
- 7.7 Sharing Global Impacts and Resources

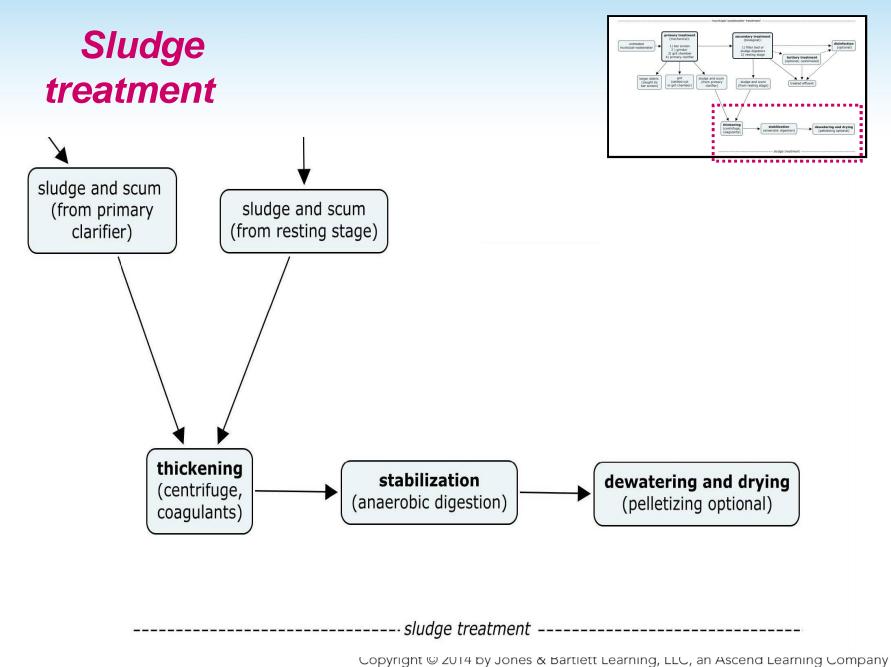

Municipal Wastewater Treatment Smaller-Scale Systems for Sewage Treatment


Regulation of Municipal Wastewater Treatment in the United States


- Three related objectives of sewage treatment
 - -Remove pathogens
 - Remove organic matter (biochemical oxygen demand or BOD)
 - -Remove suspended solids (turbidity)
- Basic processes of sewage treatment \rightarrow
- How these processes achieve objectives of sewage treatment

Primary sewage treatment

Secondary sewage treatment



sewage treatment secondary treatment (biological): disinfection 1) filter bed or (optional) sludge digesters 2) resting stage tertiary treatment (optional; customized) sludge and scum treated effluent (from resting stage)

Secondary

www.jblearning.com

FIGURE 7.8 Treated sewage sludge, shown here in pellet form, is often used as a fertilizer.

Source: Courtesv of Keith I. Maxwell.

Table 7.1 Objectives and Effects of Municipal Wastewater Treatment

Objectives	Effects of Steps in Municipal Wastewater Treatment			
	Basic Treatment Steps		Additional Optional Steps	
	Primary (mechanical)	Secondary (biological)	Tertiary Treatment	Disinfection
Remove pathogens	Most survive	Many die off	<u></u> -	Is effective
Remove organic waste (BOD)	Some is removed	Most is removed	Depends on treatment	<u> </u>
Remove suspended solids	Some are removed	Most are removed	Depends on treatment	<u></u>
Remove chemicals	-	-	Depends on treatment	

- Land application of treated sewage sludge
 - -Organic waste, rich in nutrients; solves disposal problem
 - <u>But</u>: contaminated with pathogens, metals, organic chemicals

Municipal Wastewater Treatment Smaller-Scale Systems for Sewage Treatment

Regulation of Municipal Wastewater Treatment in the United States

- Septic system = septic tank + leach field
 - −Tank receives wastewater, material forms layers, all containing fecal bacteria →
 - Liquid flows to leach field, trickles into soil; pathogens gradually die off
 - -Periodically clean out and dispose of sludge Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning

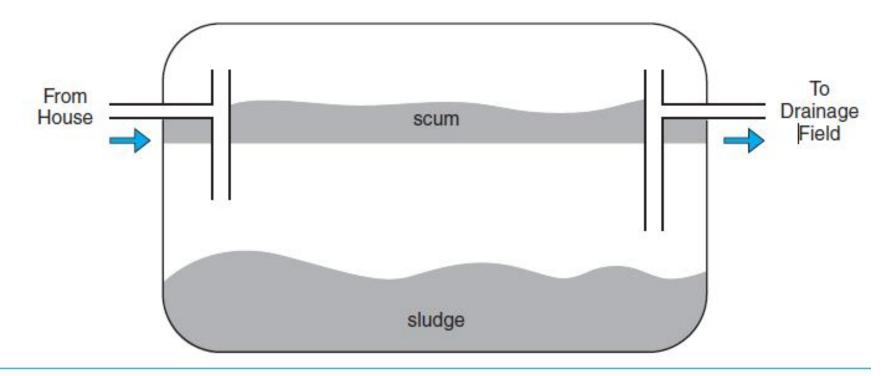


FIGURE 7.9 Schematic drawing of a septic tank (not to scale).

- Constructed (artificial) wetland
 - Between septic tank and leach field;
 - Can serve cluster of households
- Enclosed artificial ecosystem \rightarrow
 - Microorganisms digest organic wastes
 - Cleaned water recycled for use in toilets
- Composting toilet useful in some settings (e.g., parks, camps, green buildings)

FIGURE 7.10 This artificial ecosystem, known as a Living Machine, treats toilet wastes at a rest stop on the Vermont Turnpike. Source: Courtesy of Keith J. Maxwell.

Municipal Wastewater Treatment Smaller-Scale Systems for Sewage Treatment

Regulation of Municipal Wastewater Treatment in the United States

Regulation of municipal wastewater treatment in the United States Clean Water Act

- -Standards for ambient water quality
- Requirement to use secondary sewage treatment (not just primary)
- Permitting requirements for discharges (National Pollutant Discharge Elimination System)
 - Standards for effluent
 - Requirements for control technologies

Regulation of municipal wastewater treatment in the United States

-Effluent standards:

- Fecal coliform organisms
- Biochemical oxygen demand (BOD)
- -Standards for treated sludge applied to land
 - Standards for metals and pathogens
 - No standards for organic compounds

- 7.1 The "Metabolism" of Communities
- 7.2 Management of Sewage Wastes

7.3 Drinking Water: Public Systems and Private Wells

- 7.4 Solid Waste and its Management
- 7.5 Urban Settings in Less Developed Countries
- 7.6 The Built Environment in More Developed Countries
- 7.7 Lifestyles: Things We Do, Things We Use
- 7.7 Sharing Global Impacts and Resources

Household-Level Water Supply or Treatment Regulation of Drinking Water in the United States

- Water supply in U.S.
 - Average US family of four uses 400 gallons / day;^{2,3}
 - Approximately 90% on public supplies⁴
 - -9+% have private wells
 - -0.5 to 1% have no piped water⁵
- About public water supplies
 - -Delivers healthful water to many people
 - -Large cities usually rely on surface sources

- Public system can also deliver a <u>hazard</u> to large numbers of people
 - -Lead from lead pipe
 - Widely used in U.S. because malleable, not prone to corrosion
 - In light of lead's known health impacts, more recent shift to copper & plastic pipe
 - Requirements for testing and response
 - -Waterborne illness
 - Primary focus of municipal water treatment

- Basic treatment steps for drinking water
 - -Initial settling (creates sludge)
 - -Coagulation and flocculation (of tiny suspended particles)
 - -Sedimentation (more sludge)
 - -Filtering; often sand filter
- "Sludge" is mostly water; often handled as municipal wastewater

- Disinfection of drinking water
 - -Treatment specifically to kill pathogens
 - -In US, chlorination most common
 - Effective against bacteria; less so against protozoa (*Giardia*, *Cryptosporidium*) and viruses
 - Residual disinfection in distribution system –Water pipes have pipes and rough patches \rightarrow

FIGURE 7.11 This 10-year-old water supply pipe has accumulated mineral deposits that make its internal surface rough.

Source: Courtesy of Keith J. Maxwell.

- Residual chlorine can combine with organic matter
 - \rightarrow disinfection byproducts
 - Trihalomethanes—with chronic exposure, increased risk of bladder cancer^{6,7}
- -Chloramine as option for residual disinfection
- Fluoridation of drinking water
 - -Goal is 0.7-1.2 mg/l;⁸ prevents tooth decay
 - At higher concentrations, naturally occurring fluoride can cause fluorosis (mottling of teeth)

Public Water Supplies Household-Level Water Supply or Treatment

Regulation of Drinking Water in the United States

Household-level water supply or treatment

Private wells

- -No federal standards; but some state/local9
- Naturally occurring contaminants, depending on geology (e.g., radon, arsenic)
- -Vulnerable to contamination by upgradient land uses (e.g., agriculture, septic systems)
- Devices for home water treatment
 - Point-of-use systems installed at tap (e.g., carbon filter at kitchen sink)

Private wells, home water treatment, and bottled water Bottled water

- -Rapid increase in consumption¹⁰
- Expensive; often groundwater source; not likely to be fluoridated¹¹
- Regulated not as drinking water, but as packaged food
- -Often disinfected using ozone or UV light¹¹ (no residual effect needed)

Public Water Supplies Household-Level Water Supply or Treatment **Regulation of Drinking Water in the United States**

Regulation of drinking water in the United States

Safe Drinking Water Act

- National Primary Drinking Water Regulations (standards for contaminants in public drinking water supply)
 - Maximum Contaminant Level Goal (MCLG) –No anticipated health effects
 - Maximum Contaminant Level (MCL) = enforceable standard

-Considers health risks, benefits, costs

Regulation of drinking water in the United States

- For certain pathogens, EPA has set MCLGs of zero and MCLs that consist of specific testing regimen and test results¹²
 - Cryptosporidium, Giardia
 - -Coliform bacteria
 - Staged testing for coliforms, fecal coliforms, *E. coli.*
 - Fecal coliform bacteria as indicator organisms for fecal contamination

Regulation of drinking water in the United States

- EPA has also set MCLGs & MCLs for turbidity, many chemicals
- Safe Drinking Water Act also calls for:
 - Watershed protection, regular monitoring of public supplies, public information on water quality
- Bottled water (FDA, Federal Food, Drug, and Cosmetic Act)—a packaged food ¹⁰
 - Requirements for labeling, quality, manufacturing practices

- 7.1 The "Metabolism" of Communities
- 7.2 Management of Sewage Wastes
- 7.3 Drinking Water: Public Systems and Private Wells

7.4 Solid Waste and its Management

- 7.5 Urban Settings in Less Developed Countries
- 7.6 The Built Environment in More Developed Countries
- 7.7 Lifestyles: Things We Do, Things We Use
- 7.7 Sharing Global Impacts and Resources

About municipal solid waste

- Typical makeup \rightarrow
- Mundane, but hard to manage
 - Large total quantity; produced by large number of individual households
 - -Varied; may include hazardous items
 - -Food waste must be removed quickly
- Management options:
 - -Produce less waste ("waste prevention")
 - -Recycle, incinerate, landfill $\rightarrow \rightarrow$

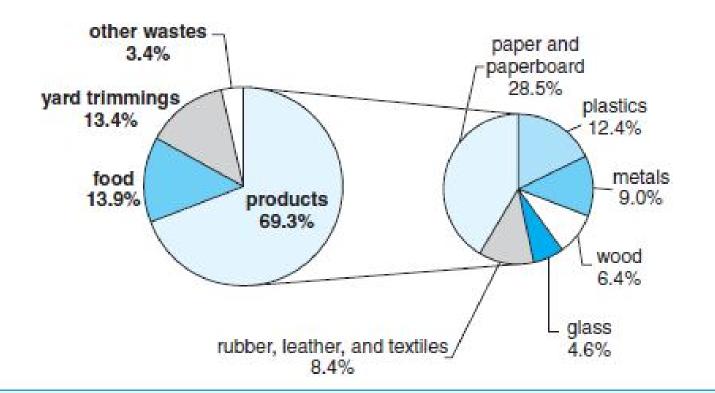


FIGURE 7.12 Makeup of municipal solid waste (by weight) in the United States, 2010.

Source: Data from EPA. Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2010. Available at: www.epa.gov/osw /nonhaz/municipal/pubs/msw_2010_rev_factsheet.pdf. Accessed May 7, 2012.

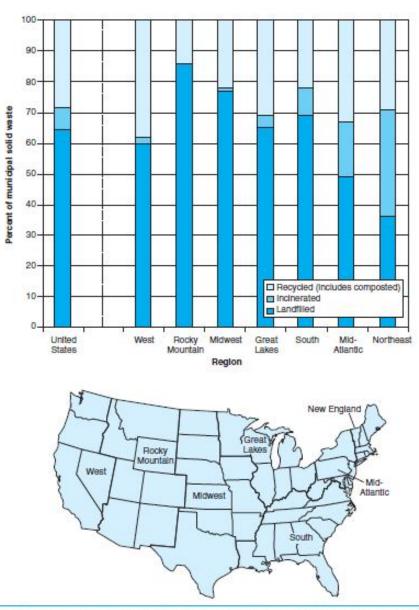


FIGURE 7.13 Fate of municipal solid waste (by weight) in the United States and by U.S. region, 2005.

Source: Data from Simmons P, Goldstein N, Kaufman S, Themelis N, Thompson J. The state of garbage in America. BioCycle. 2006;47(4):26.

Recycling, including composting

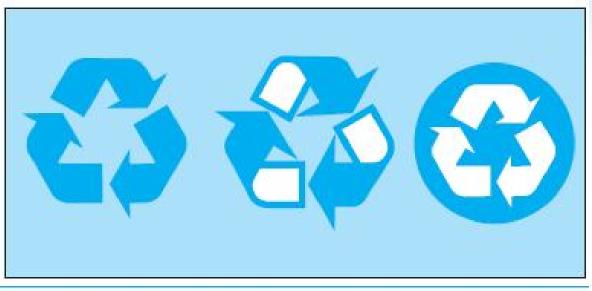


FIGURE 7.14 These and other variants on the basic image of three arrows in an endless loop are in use, indicating either that a product is recyclable or that it contains recycled materials.

Source: U.S. Environmental Protection Agency. EPA Communications: Development and Review/Seal and Logo Files. Available at: www.epa.gov/productreview/guide /seal_logo/index.html. Accessed January 14, 2012.

- Removes glass, metal, plastics, paper from waste stream before disposal
 - Sorted by consumers
 - Or sorted at materials recovery facility

Recycling, including composting

- Compositing—removes organic materials before waste disposal
 - Municipal composting (yard trimmings)
 - -Household composting
 - Outdoors, composting bin or pile
 - Indoors, vermicomposting¹³

Waste-to-energy incineration

- Incineration of waste to generate energy
 - -Greatly decreases volume
 - -Challenges:
 - Metals in waste stream → particulates (or mercury vapors) in emissions; must be captured
 - Plastics → dioxins & furans if temperature not high enough
 - Both fly ash and bottom ash must be captured and disposed of properly

Disposal in landfills

- Modern MSW landfill \rightarrow
 - -Licensed, usually operated by corporation
 - -Lined pit
 - -Trash compacted in layers
 - -Capped with clay
 - -Systems collect & remove leachate, methane
 - -Ongoing maintenance & monitoring

Disposal in landfills

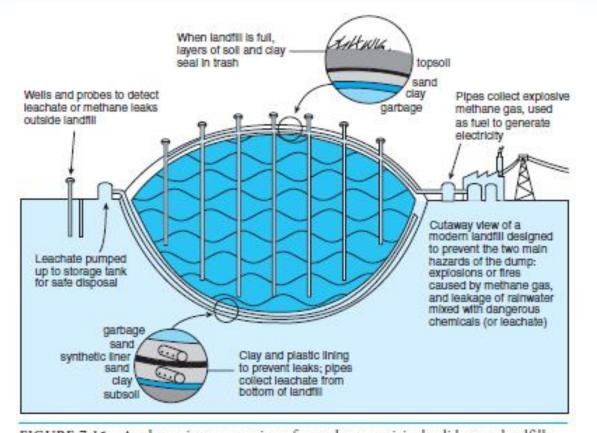


FIGURE 7.15 A schematic cross-section of a modern municipal solid waste landfill. Source: Reprinted from U.S. Environmental Protection Agency, Resource Conservation and Recovery Act (RCRA). Available at: www.epa.gov/superfund/students/clas_act /haz-ed/ff 06.htm. Accessed December 13, 2007.

Handling of household hazardous wastes

- Same criteria: corrosive, toxic, ignitable, reactive
- Exx:¹⁴ Drain cleaners, rat poison, antifreeze, pesticides →
- Separate handling not required by federal law; many cities / towns do have programs

FIGURE 7.16 This bottle of liquid chlordane, which sat in a garage for 20 years after the sale of the pesticide was prohibited in the United States, was turned in at a municipal collection day for household hazardous wastes.

Medical waste

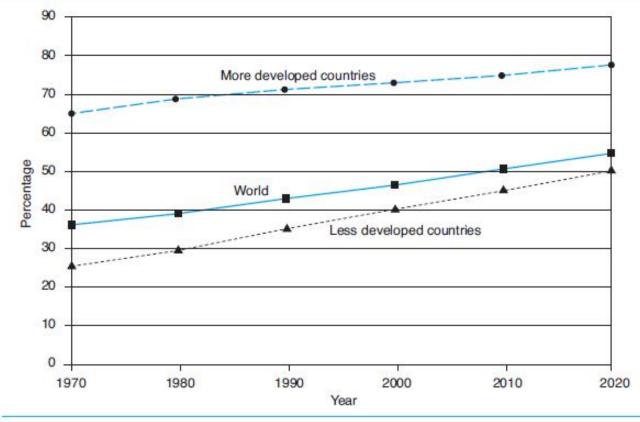
Produced by health care facilities

 Infectious, hazardous, radioactive
 Federal incinerator emissions limits;

but much regulation is state or local

Regulation of municipal solid waste in the United States

- Resource Conservation and Recovery Act
 - -No open dumping; requirements for landfill features, groundwater monitoring
 - Encourages source reduction, recycling, waste-to-energy technologies
- Clean Air Act


-Governs incinerator emissions

- 7.1 The "Metabolism" of Communities
- 7.2 Management of Sewage Wastes
- 7.3 Drinking Water: Public Systems and Private Wells
- 7.4 Solid Waste and its Management

7.5 Urban Settings in Less Developed Countries

- 7.6 The Built Environment in More Developed Countries
- 7.7 Lifestyles: Things We Do, Things We Use
- 7.7 Sharing Global Impacts and Resources

- Global population > half urban \rightarrow
- 3 billion people in cities; 1 billion in urban slums¹⁵
- Emergence of megacities > 10 million, most in less developed countries →→
- Estimate 37 megacities by 2025¹⁶

Source: Data from United Nations. World Urbanization Prospects: The 2005 Revision Population Database; Table A.2. Available at: www.un.org/esa/population/publications /WUP2005/2005wup.htm. Accessed April 23, 2007.

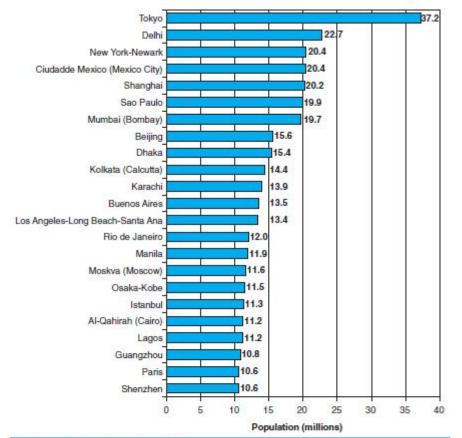


FIGURE 7.18 Population of the world's 23 megacities, 2011.

Source: Data from United Nations, Department of Economic and Social Affairs, Population Division (2012). World Urbanization Prospects: The 2011 Revision, CD-ROM Edition.

- Poverty, crowding, poor housing, lack of sanitation & clean water¹⁷
- Air pollution, toxic wastes, fires, traffic accidents, violence¹⁷
- Conditions conducive to infectious disease →
 - -Standing water, poor sanitation, crowding

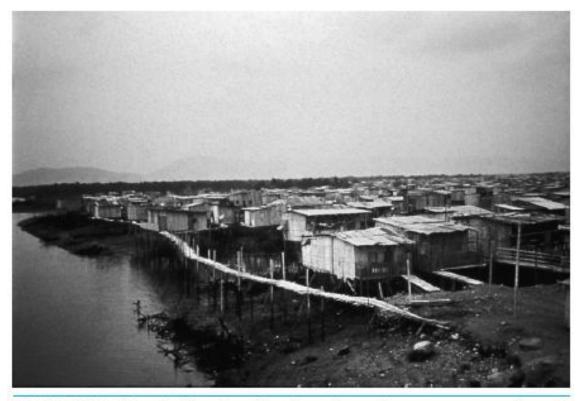


FIGURE 7.19 Slum dwellings in an Ecuadoran city perch over sewage-contaminated water.

Source: Reprinted courtesy of CDC Public Health Image Library. ID# 5323. Content provider: CDC. Available at: http://phil.cdc.gov/phil/home.asp. Accessed October 30, 2012.

- 7.1 The "Metabolism" of Communities
- 7.2 Management of Sewage Wastes
- 7.3 Drinking Water: Public Systems and Private Wells
- 7.4 Solid Waste and its Management
- 7.5 Urban Settings in Less Developed Countries
- 7.6 The Built Environment in More Developed Countries
- 7.7 Lifestyles: Things We Do, Things We Use
- 7.7 Sharing Global Impacts and Resources

Electrical Transmission Lines Suburban Sprawl Construction Practices

- Electrical transmission lines
 - -Emit extremely low frequency (ELF) radiation

 –IARC, NIOSH classify ELF electromagnetic fields as possibly carcinogenic to humans (Group 2B)^{18, 19} Electrical Transmission Lines **Suburban Sprawl**Construction Practices

- Suburban sprawl
 - –Low-intensity construction; separation of land uses through zoning²⁰ →
 - Extensive road systems, heavy traffic²⁰

FIGURE 7.22 Suburban residential developments like this one, with its curving culde-sacs and large homes, all similar in design, are found all across the United States. *Source*: © 2007 Craig L. Patterson. Used with permission.

- -High per-capita energy use in suburbs (single-family homes, need car)
- High traffic fatalities²¹ (heavy traffic at high speeds outside residential areas)
- –Walking may be inconvenient or hazardous; perhaps contributing to obesity²²
 - Note factors in <u>urban</u> settings (e.g., poverty) also linked to obesity²³

Electrical Transmission Lines Suburban Sprawl Construction Practices

- Construction practices. Important because:
 - -Indoor settings are enclosed spaces
 - –Americans spend²⁴
 - 87% of their time indoors
 - 69% of their time in their homes
 - -Working adults: time indoors at work
 - -Children: time indoors at school

Radon gas in buildings

- Natural hazard in some regions
 - -Seeps into house, especially basement
 - -Volatilizes from tap water (groundwater); accumulates in indoor air
 - -Begins series of rapid breakdowns
 - -Radon and some progeny are alpha emitters; lung cancer risk
 - -Often simple to detect and remediate

Unhealthy construction materials and sick buildings

- Asbestos
 - In industrialized countries, nearly everyone has asbestos fibers in lungs²⁵
 - -Some risk of cancer, not fibrotic disease
- Formaldehyde
 - -Pressed wood products, crease-proof fabrics
 - -Gas at room temp; moves into indoor air
 - -Respiratory irritation, asthma, cancer

Unhealthy construction materials and sick buildings

- "Sick building syndrome"
 - Nonspecific symptoms experienced by occupants of a building
- \rightarrow "Sick building" designation
 - A building whose occupants experience such symptoms
- Building-related illness
 - Specific diagnosable illness, linked to specific feature of building

- 7.1 The "Metabolism" of Communities
- 7.2 Management of Sewage Wastes
- 7.3 Drinking Water: Public Systems and Private Wells
- 7.4 Solid Waste and its Management
- 7.5 Urban Settings in Less Developed Countries
- 7.6 The Built Environment in More Developed Countries

7.7 Lifestyles: Things We Do, Things We Use

7.7 Sharing Global Impacts and Resources

Tobacco Smoke

Products used at Home

Sources of Ionizing Radiation

Sources of Non-Ionizing Radiation

Environmental Noise

Regulation Related to Hazards of Modern Life

Tobacco smoke

- Tobacco smoke
 - –Historically, smoking accepted and even encouraged (e.g., rations to soldiers²⁶)
 - -1950: smoking linked to lung cancer²⁷
 - -Evidence accumulated over decades
 - Settlement agreements between states and tobacco companies²⁸
 - Even in 2010, about one-fifth of US adults were smokers²⁹

Tobacco smoke

- Evidence on health hazards of smoking
 - -Emphysema, heart disease, heart attack, stroke³⁰
 - -Cancer: mouth, pharynx, larynx, lung, bladder; esophagus, stomach, kidney, pancreas, cervix; probably female breast cancer and primary liver cancer³⁰⁻³³
 - -Hearing loss^{34,35}
 - During pregnancy: increased risk of stillbirth, Iow birthweight, SIDS³⁶ Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

www.jblearning.com

Tobacco smoke

- Environmental tobacco smoke (secondhand smoke):
 - Adults: heart disease, heart attack, lung cancer;³⁷ hearing loss³⁴
 - Children: SIDS, asthma;³⁷ hearing loss³⁵
- Smoking is on the rise in less developed countries
 - More than 8 million people projected to die from smoking-related causes in 2030³⁸

Tobacco Smoke **Products used at Home** Sources of Ionizing Radiation Sources of Non-Ionizing Radiation Environmental Noise Regulation Related to Hazards of Modern Life

- Lead paint: pigment ("white lead") added to paint for durability, brightness
 - –By 1915, known to be neurotoxic³⁹
 - –By 1931, 11 European countries had banned white lead in indoor paints³⁹
 - <u>1978</u>: US banned white lead in interior
 & exterior paints

- Children's exposure to lead in paint
 - Mainly incidental ingestion of house dust; also soil near house;^{40,41} hand-to-mouth exposures
- Homes with significant hazard⁴²
 - -1990: 64 million US housing units
 - -1998-2000: 38 million US housing units
- Remediation is difficult & expensive \rightarrow
- Progress over time in reducing blood lead levels in US children $\rightarrow \rightarrow$
- But racial and ethnic disparities persist

FIGURE 7.23 This worker wears protective gear as he demonstrates the use of a power sander to remove lead paint in 1999—a common renovation method at the time. *Source*: Reprinted courtesy of CDC Public Health Image Library. ID# 7333. Content provider: CDC/Aaron L. Sussell. Available at: http://phil.cdc.gov/phil/home.asp. Accessed October 30, 2012.

Table 7.7 Decline in Blood Lead Levels (μg/dL) in U.S. Children Ages 1 to 5 Years, Over a 30-Year Period

Percentile	1976-1980	1988-1991	1992-1994	1999-2000	2003-2004	2007-2008
50th	15	3.5	2.6	2.2	1.6	1.4
90th	25	9.4	7.1	4.8	3.9	2.8

Sources: Adapted from U.S. Centers for Disease Control and Prevention. America's Children and the Environment. Table B-1: Concentrations of Lead in Blood of Children Ages 5 and Under. Available at: www.epa.gov/ace/archives /datatables_07-08.html#bb. Accessed December 7, 2012; U.S. EPA, Report on the Environment/Blood Lead Level. Available at: http://cfpub.epa.gov/eroe/index.cfm?fuseaction=detail.viewInd&lv=list.listbyalpha&r=224030&sub top=208. Accessed April 27, 2012.

Personal care products

- Deliberately applied to body; habitual use
 - Exposure hard to document
 - Individuals use a changing list of products
 - Products have a changing list of ingredients
 - Not all ingredients listed on label
 - -Toxicity of many ingredients not well known
 - e.g., only recent attention to phthalates as endocrine disruptors
- Heavily marketed, especially to women
- Wide use of antimicrobial products⁴³ contributes to antibiotic resistance
 Covright © 2014 by Jones & Bartlett Learning, ILC, an Ascender

Products for housekeeping, including pesticides

www.jblearning.com

- Products advertised to make home feel clean and smell good; many contain respiratory irritants
 - -Cleaning products, laundry products
 - -Air fresheners, toilet bowl cleaners
- Antibacterial sprays and soaps
- Pesticides used in the home
 - -Special risk to children
 - Illegal household pesticides -

Products for housekeeping, including pesticides

FIGURE 7.24 This illegal pesticide, known as Chinese chalk, resembles ordinary blackboard chalk.

Source: Courtesy of Dion Lerman, Pennsylvania Integrated Pest Management Program/ Pennsylvania State University.

Tobacco Smoke Products used at Home Sources of Ionizing Radiation Sources of Non-Ionizing Radiation Environmental Noise Regulation Related to Hazards of Modern Life

Sources of ionizing radiation

- Average annual exposure to medical X-rays in countries with at least one physician per 1000 population:⁴⁴
 - -1.92 mSv per capita
- Global average annual exposure to radon:⁴⁵
 - -1.15 mSv per capita

Tobacco Smoke Products used at Home Sources of Ionizing Radiation Sources of Non-Ionizing Radiation Environmental Noise Regulation Related to Hazards of Modern Life

Sources of non-ionizing radiation

- Cellular phones
 - -Emit microwave radiation
 - -Cell phone users estimated at 2/3 of global population (4.6 billion people)⁴⁶
 - -Concern is brain cancer (near ear); to date, inconclusive^{46,47}

www.jblearning.com

- Tanning salons / tanning beds
 - -Emit mainly UV-A radiation; Group 1 carcinogen⁴⁸ Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

Tobacco Smoke Products used at Home Sources of Ionizing Radiation Sources of Non-Ionizing Radiation **Environmental Noise** Regulation Related to Hazards of Modern Life

Environmental noise

- Recreational activities
 - Target shooting, rock music, motorcycle races
 - Personal music players^{49,50}
- Prevalence of hearing loss in US adolescents:⁵¹
 - -15% in 1988-1994
 - -20% in 2005-2006
- Airport noise at school associated with impaired reading comprehension and long-term memory⁵²

Tobacco Smoke Products used at Home Sources of Ionizing Radiation Sources of Non-Ionizing Radiation Environmental Noise **Regulation Related to Hazards of Modern** Life

Regulation related to hazards of modern life

- The indoor environment
 - –EPA: Technical assistance and education / outreach on lead hazards
 - -EPA: Financial support and technical assistance for states' radon programs
 - -Consumer Product Safety Commission: main focus on packaging and labeling

Regulation related to hazards of modern life

- Cigarettes and cosmetics
 - Cigarettes:²⁸ no smoking on domestic flights; no ads on TV or radio; warnings on packages
 - Cosmetic products and ingredients
 - No premarket approval; safety review by trade group
 - As of 2006,10 ingredients prohibited in cosmetics
- Noise
 - Two federal laws, unfunded for nearly 30 years
 - Regulations at state and local levels

- 7.1 The "Metabolism" of Communities
- 7.2 Management of Sewage Wastes
- 7.3 Drinking Water: Public Systems and Private Wells
- 7.4 Solid Waste and its Management
- 7.5 Urban Settings in Less Developed Countries
- 7.6 The Built Environment in More Developed Countries
- 7.7 Lifestyles: Things We Do, Things We Use

7.7 Sharing Global Impacts and Resources

Quantifying the Impacts of Development Facing a Challenging Future

Quantifying the impacts of development

- The impact equation:
 Impact = Population x Consumption
 or, I = P x C
- C can be expanded, yielding the IPAT equation:

I = P x A x Twhere A = affluence, T = technology

Quantifying the impacts of development

- Carrying capacity = maximum impact an ecosystem (or the earth) can support for extended period
- Sustainable development = development whose impact can be maintained over many generations
- Ecological footprint (a measure of impact):⁵³ the area on the earth's surface required to provide resources for, and absorb the wastes of, a person or population with a given lifestyle.

Quantifying the impacts of development

- Components of the ecological footprint:⁵³
 - -Built-up land area
 - -Area needed to produce food on land
 - -Area needed to produce food at sea
 - Forested area needed to produce wood products
 - -Forested area needed to absorb CO₂ from burning fossil fuels (carbon footprint)

Quantifying the Impacts of Development Facing a Challenging Future

Facing a challenging future

- Global carrying capacity in 2007
 - 1.8 hectares per capita⁵⁴
- Global average ecological footprint in 2007 \rightarrow
 - -2.7 hectares per capita⁵⁴
- Key ecological and demographic realities:
 - Western-style development not sustainable globally
 - Enormous disparities between ecological footprints of richer and poorer countries
 - Future strain on global carrying capacity will be driven by regions with largest populations (China and India, both with increasing per capita footprints)

Facing a challenging future

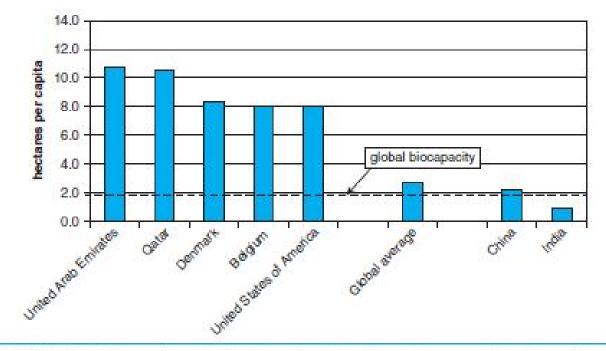


FIGURE 7.26 Per capita ecological footprints for the top five countries, the world as a whole, and two rapidly industrializing, high-population countries, compared to global biocapacity, 2007.

Source: Data from Global Footprint Network, Data and Results, 2010. Available at: www.footprintnetwork.org/en/index.php/GFN/page/ecological_footprint_atlas/. Accessed May 3, 2012.

Facing a challenging future

- A daunting challenge: designing a global future that is both more sustainable and more equitable
- Technology, re-oriented towards the "green," may become part of the solution
- Compelling concerns
 - -Growing burden of ecological debt
 - -Reality of global connectedness
 - -Global climate, hanging in the balance

- 1. Tarr J. The Search for the Ultimate Sink: Urban Pollution in Historical Perspective. Akron, OH: University of Akron Press; 1996.
- 2. U.S. Environmental Protection Agency. Indoor Water Use in the United States. 2007;EPA832-F-06-004. Available at: www.epa.gov/watersense/docs/ws_indoor508.pdf. Accessed October 30, 2012.
- 3. U.S. Environmental Protection Agency. Outdoor Water Use in the United States. 2007; EPA832-F-06-005. Available at: www.epa.gov/watersense/docs/ws_outdoor508.pdf. Accessed October 30, 2012.
- 4. U.S. Environmental Protection Agency. Public Drinking Water Systems: Facts and Figures; 2006. Available at: www.epa.gov/ogwdw/pws/index.html. Accessed December 27, 2007.
- 5. VanDerslice J. Drinking water infrastructure and environmental disparities: Evidence and methodological considerations. *Am J Pub Health*. 2011;101:S109.
- 6. Villanueva C, Cantor K, Grimalt J, et al. Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. *Am J Epidemiol.* 2007;165:148–156.
- 7. Chang C, Ho S, Wang L, Yang C. Bladder cancer in Taiwan: relationship to trihalomethane concentrations present in drinking-water supplies. *J Toxicol Env Heal A*. 2007;70:1752–1757.
- 8. U.S. Centers for Disease Control and Prevention. Community Water Fluoridation; 2007. Available at: www.cdc.gov/fluoridation/. Accessed December 27, 2007.
- 9. U.S. Environmental Protection Agency. Private Drinking Water Wells; 2006. Available at: www.epa.gov/safewater/privatewells/index2.html. Accessed December 27, 2007.
- 10. U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition. Bottled Water Regulation and the FDA. *Food Safety Magazine* [serial online]. 2002. Available at: www.cfsan.fda.gov/~dms/botwatr.html. Accessed December 27, 2007.
- 11. U.S. Environmental Protection Agency. Bottled Water Basics. 2005. www.epa.gov /OGWDW/faq/pdfs/fs_healthseries_bottlewater.pdf. Accessed April 29, 2008.
- 12. U.S. Environmental Protection Agency. Drinking Water Contaminants. Available at: www .epa.gov/safewater/contaminants/index.html. Accessed April 30, 2008.
- 13. Massachusetts Water Resources Authority. About MWRA. Available at: www.mwra.state .ma.us/02org/html/whatis.htm. Accessed April 25, 2012.
- 14. U.S. Environmental Protection Agency. List of Common HHW Products. 2006. Available at: www.epa.gov/msw/hhw-list.htm. Accessed March 30, 2007.

- 15. United Nations. World Urbanization Prospects: The 2005 Revision Database; Table A.2. Available at: www.un.org/esa/population/publications/WUP2005/2005wup.htm. Accessed April 23, 2007.
- 16. United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2011 Revision. 2012. Available at: http://esa.un.org/unpd/wup/pdf/WUP2011_ Highlights.pdf. Accessed June 20, 2012.
- 17. World Health Organization. A Billion Voices: Listening and Responding to the Health Needs of Slum Dwellers and Informal Settlers in New Urban Settings. 2005. Available at: www.who.int/social_determinants/resources/urban_settings.pdf. Accessed October 30, 2012.
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Volume 80: Non-Ionizing Radiation, Part 1: Static and Extremely Low-Frequency (ELF) Electric and Magnetic Fields. World Health Organization; 2002. Available at: http://monographs.iarc.fr/ENG/Monographs/vol80/volume80.pdf. Accessed April 27, 2012.
- 19. National Institute of Environmental Health Sciences. Assessment of Health Effects from Exposure to Power-Line Frequency Electric and Magnetic Fields. 1998; NIH Publication No. 98-3981.
- 20. Duany A, Plater-Zyberk E, Speck J. Suburban Nation: The Rise of Sprawl and the Decline of the American Dream. New York: North Point Press; 2000.
- 21. Ewing R, Schieber R, Zegeer M. Urban sprawl as a risk factor in motor vehicle occupant and pedestrian fatalities. *Am J Public Health*. 2003;93:1541–1545.
- 22. Frumkin H. Urban sprawl and public health. Public Health Rep. 2002;117:201–212.
- 23. Drewnowski A, Specter S. Poverty and obesity: the role of energy density and energy costs. Am J Clin Nutr. 2004;79:6–16.
- 24. Klepeis N, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. *J Expo Anal Env Epid*. 2001;11:231–252.
- 25. Robinson BS, Musk AW, Lake RA. Malignant mesothelioma. Lancet. 2005;366:397-408.
- 26. U.S. Centers for Disease Control and Prevention. Reducing Tobacco Use: A Report of the Surgeon General. 2000. Available at: www.cdc.gov/tobacco/data_statistics/sgr/2000 /complete_report/pdfs/fullreport.pdf. Accessed October 30, 2012.
- 27. Doll R, Hill A. Smoking and carcinoma of the lung; preliminary report. Brit Med J. 1950;2:739–748.
- 28. U.S. Centers for Disease Control and Prevention. Smoking and Tobacco Use. 2007. Available at: www.cdc.gov/tobacco/data_statistics/mmwrs/byyear/2007/index.htm. Accessed October 30, 2012.
- 29. U.S. Centers for Disease Control and Prevention. Adult Cigarette Smoking in the United States: Current Estimate. Available at: www.cdc.gov/tobacco/data_statistics/fact_sheets /adult_data/cig_smoking/index.htm. Accessed April 28, 2012.
- 30. National Cancer Institute. Cigarette Smoking and Cancer: Questions and Answers; 2007. Available at: www.cancer.gov/cancertopics/factsheet/Tobacco/cancer. Accessed April 5, 2007.
- 31. Reynolds P, Hurley S, Goldberg D, et al. Active smoking, household passive smoking, and breast cancer: evidence from the California Teachers Study. J Nat Cancer Inst. 2004;96:29–37.
- 32. Jee S, Ohrr H, Sull J, Samet J. Cigarette smoking, alcohol drinking, hepatitis B, and risk for hepatocellular carcinoma in Korea. J Nat Cancer Inst. 2004;96:1851–1856.

- 33. Tanaka K, Tsuji I, Wakai K, et al. Cigarette smoking and liver cancer risk: an evaluation based on a systematic review of epidemiologic evidence among Japanese. *Jpn J Clin Oncol.* 2006;36:445–456.
- 34. Mahboudi H, Zardouz S, Oliaei S, Pan D, Bazargan M, Djalilian H. Noise-induced hearing threshold shift among U.S. adults and implications for noise-induced hearing loss: national Health and Nutrition Examination Surveys. *European Archives of Otorhinolaryngology (online)* [serial online]. 2012. Available at: doi:10.1007/s00405-012-1979-6. Accessed April 7, 2012.
- Niskar AS, Kieszak SM, Holmes AE, Esteban E, Rubin C, Brody DJ. Estimated prevalence of noise-induced hearing threshold shifts among children 6 to 19 years of age: the Third National Health and Nutrition Examination Survey, 1988–1994, United States. *Pediatrics*. 2001;108:40–43.
- 36. National Cancer Institute. Fact Sheet/Harms of Smoking and Health Benefits of Quitting. Available at: www.cancer.gov/cancertopics/factsheet/Tobacco/cessation. Accessed July 12, 2012.
- 37. U.S. Centers for Disease Control and Prevention. Fact Sheet: Secondhand Smoke. 2006. Available at: www.cdc.gov/tobacco/data_statistics/Factsheets/SecondhandSmoke.htm#. Accessed April 5, 2007.
- 38. Eriksen M, Mackay J, Ross H. The Tobacco Atlas (4th Ed.). Atlanta, GA: American Cancer Society & World Lung Foundation; 2012. Available at: www.tobaccoatlas.org/uploads /Images/PDFs/Tobacco_Atlas_4_entire.pdf. Accessed June 20, 2012.
- 39. Markowitz G, Rosner D. Deceit and Denial: The Deadly Politics of Industrial Pollution. Berkeley: University of California Press; 2002.
- 40. Lanphear BP, Burgoon DA, Rust SW, Eberly S, Galker W. Environmental exposures to lead and urban children's blood lead levels. *Environ Res.* 1998;76:120–130.
- 41. Lanphear BP, Matte TD, Rogers J, et al. The contribution of lead-contaminated house dust and residential soil to children's blood lead levels: a pooled analysis of 12 epidemiologic studies. *Environ Res.* 1998;79:51–68.
- 42. Jacobs DE, Clickner RP, Zhou JY, et al. The prevalence of lead-based paint hazards in U.S. housing. *Environ Health Persp.* 2002;101:A599–A606.
- 43. Perencevich EN, Wong MT, Harris AD. National and regional assessment of the antibacterial soap market: a step toward determining the impact of prevalent antibacterial soaps. A J Infect Control. 2001;29:281–283.
- 44. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation: UNSCEAR 2008 Report to the General Assembly with Scientific Annexes. 2010. Available at: www.unscear.org/unscear/en/publications/2008_1 .html. Accessed June 20, 2012.
- 45. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2006 Report Vol. I: Effects of Ionizing Radiation, Annex E. 2008. Available at: www.unscear.org/docs/reports/2006/09-81160_Report_Annex_E_2006_Web.pdf. Accessed June 20, 2012.
- 46. Saracci R, Samet J. Commentary: Call me on my mobile phone . . . or better not?—a look at the INTERPHONE study results. *Intl J Epidemiol.* 2010;39:695.
- 47. INTERPHONE Study Group. Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case–control study. *Int J Epidemiol.* 2010;39:675.

- 48. U.S. Environmental Protection Agency. *Learn about Chemicals Around Your House: Air Fresheners*. Available at: www.epa.gov/kidshometour/products/airf.htm. Accessed April 4, 2007.
- 49. Serra MR, Biassoni EC, Richter U, et al. Recreational noise exposure and its effects on the hearing of adolescents. Part I: an interdisciplinary long-term study. *Int J Audiol.* 2005;44:65.
- 50. Biassoni EC, Serra MR, Richtert U, et al. Recreational noise exposure and its effects on the hearing of adolescents. Part II: development of hearing disorders. *Int J Audiol.* 2005;44:74.
- 51. Shargorodsky J, Curham SG, Curham GC, Eavey R. Change in prevalence of hearing loss in U.S. adolescents. JAMA. 2010;304:772.
- 52. Stansfeld SA, Matheson MP, Mark P. Noise pollution: non-auditory effects on health. British Med Bull. 2003;68:243–257.
- 53. Global Footprint Network. Footprint basics—Overview. Available at: www.footprintnetwork. org/en/index.php/GFN/page/footprint_basics_overview/. Accessed May 1, 2012.
- 54. Global Footprint Network. Data and Results. Available at: www.footprintnetwork.org/en /index.php/GFN/page/footprint_data_and_results/. Accessed May 3, 2012.