SECOND EDITION

#### Understanding Environmental Health

How We Live in the World

#### Chapter 3 Living with Other Species

Background image © Kang Khoon Seang/ShutterStock, Inc. Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company www.jblearning.com

Nancy Irwin Maxwell

#### **3.1 Infectious Disease**

- 3.2 Poisons in Nature
- 3.3 Allergy and Asthma
- 3.4 Natural Disasters
- 3.5 Naturally Occurring Radiation

### Introduction to infectious disease

- "Infectious disease" is host-centered concept
  - -Human body is habitat and host to many organisms.
  - -Associations that harm or bother us are *infectious diseases*; agents are *pathogens*.
  - Zoonosis—infectious disease transmissible to humans from other animals.

#### Types of pathogens

The Body's Defense against Pathogens The Transmission of Infectious Disease Population-Level Impacts of Infectious Disease U.S. Regulatory Framework for Managing Infectious Disease Risk

#### Types of pathogens

- Worms—multicellular; parasitic
- Protozoa—unicellular; parasitic
- Bacteria—unicellular; most not parasitic
  - Aerobic vs anaerobic; or tolerate either
  - Some form spores
- Viruses—strand of DNA or RNA; parasitic
- Prions— abnormally shaped proteins found on nerve cells; cause degenerative brain diseases

#### Types of pathogens



FIGURE 3.2 Approximate relative size of protozoan, bacterium, and virus.

Types of pathogens **The Body's Defense against Pathogens** The Transmission of Infectious Disease Population-Level Impacts of Infectious Disease U.S. Regulatory Framework for Managing Infectious Disease Risk

# The body's defense against pathogens

- Immune system distinguishes "self" from "foreign"
  - Active immunity—on first exposure to antigen, body produces antibodies
- Vaccination
  - Antigen preparation  $\rightarrow$  active immunity
  - Antibody preparation  $\rightarrow$  passive immunity
- Herd immunity—practical protection
  - If enough members of a group are immune, hard to maintain chain of infection

Types of Pathogens
The Body's Defense against Pathogens **The Transmission of Infectious Disease**Population-Level Impacts of Infectious Disease
U.S. Regulatory Framework for Managing Infectious Disease Risk Evolution of strategies for managing transmission of disease

- Segregation of sick or exposed persons
  - Isolation: the separation of persons who have an infectious illness<sup>5</sup>
  - Quarantine: the separation of persons
     who have been exposed to an infectious
     agent<sup>5</sup>
- Sanitation: misguided but beneficial

#### Evolution of strategies for managing transmission

- Vaccination (above) to prevent illness
- Antibiotics to treat illness
  - Populations of pathogens become resistant over time
  - Methicillin-resistant Staphylococcus aureus (MRSA)
- Pesticides (below) to control vectors

#### The transmission

- of infectious disease
- Transmission through closeness / contact
  - -Droplet transmission: coughing, sneezing
    - Diphtheria, tuberculosis, pertussis; influenza, measles, mumps, rubella
  - -Direct oral contact
    - Strep, herpes simplex-1, infectious mononucleosis
  - -Transmission by fomite
- Airborne transmission in aerosols (distinct from droplet transmission)

- Fecal-oral transmission of diarrheal disease
  - Fecal-oral pathway: one person's infectious diarrheal disease becomes next person's disease of fecal origin
  - If sewage not well controlled, waterborne transmission dominates



FIGURE 3.4 Fecal-oral transmission of disease via water, soil, and hands in a setting with no treatment of sewage or drinking water.

- -Fecal-oral transmission also via soil and by hand-to-mouth transmission
- Cholera, typhoid fever, dysentery;
   giardiasis, cryptosporidium (zoonoses);
   hepatitis A, Norwalk virus, polio
- Compositing toilet as innovative approach to sanitation in less developed countries





Source: Courtesy of ReSource Institute for Low-Entropy Systems (RILES).

- Non-fecal organisms also transmitted in water or soil ...
  - -Guinea worm disease
  - -Tetanus
- ... and via food (foodborne transmission) →
  - -Housefly as mechanical vector





- Without sanitation, most foodborne illness is by fecal-oral pathway
- In the industrialized countries, some foodborne illness is of human fecal origin
  - Shellfish contaminated by sewage
  - Inadequate handwashing in food preparation
- -But most is from other sources:
  - Animal fecal pathogens, from slaughter
  - Pathogens in soil on food
  - Human skin
  - Mechanical vectors (flies, cockroaches)

- -Basic levers for food safety
  - Time and temperature: "Keep it hot, or keep it cold, or don't keep it."
  - Temperature: danger zone is 40°F to 140°F
  - Time: lag phase and log phase in growth of bacterial population



FIGURE 3.8 Addition of foodborne transmission to basic fecal-oral transmittion of disease, in a setting with no treatment of sewage or drinking water.

- -Some important foodborne pathogens<sup>1</sup>
  - Illness may result directly from infection or from a bacterial toxin (intoxication)
  - Non-typhoid Salmonella
    - Common in poultry feces; contaminate flesh
    - Typical scenario #1: poultry not cooked to high enough temperature
    - Typical scenario #2: cross-contamination after cooking
    - Common illness; gastrointestinal; rarely fatal

- Campylobacter species
  - -Also common in feces of poultry
  - Common illness; gastrointestinal; rarely fatal
- Listeria monocytogenes
  - -Widespread in environment; hardy
  - -Septicemia, meningitis, reproductive effects<sup>1</sup>
  - -Higher fatality rate

- Escherichia coli (E. coli) O157:H7<sup>2</sup>
  - May be in cattle intestines; contaminates meat during processing
  - Inadequate cooking, especially hamburgers; as few as 10 organisms can cause illness
  - Intoxication; bloody diarrhea; sometimes hemolytic uremic syndrome, death

Table 3.2 Estimated Overall Incidence and Case-Fatality Ratio\* for Four Foodborne Illnesses in the United States in 2010

|                 | Incidence per 100,000 Population | Case-Fatality Ratio |
|-----------------|----------------------------------|---------------------|
| Salmonella      | 17.62                            | 0.35                |
| Campylobacter   | 13.58                            | 0.13                |
| Listeria        | 0.27                             | 12.80               |
| E. coli 0157:H7 | 0.94                             | 0.45                |

\*In infectious disease, the term *case-fatality ratio* compares the number of deaths among reported cases to the number of reported cases, calculated as: (number of deaths/number of cases) × 100.

Source: CDC, FoodNet Facts and Figures—Incidence of laboratory-confirmed bacterial and parasitic infections in 2010 (Table 3b), Available at: www.cdc.gov/foodnet/PDFs/Table3b.pdf. Accessed November 11, 2012; CDC, FoodNet Facts and Figures—Number of deaths and case fatality ratio (CFR) in 2010, by pathogen (Table 13), Available at: www.cdc.gov/foodnet/PDFs/Table13.pdf. Accessed November 11, 2012.

- Staphylococcus aureus (staph)
  - Human skin; sores and cuts; poor handwashing
- Clostridium botulinum (botulism poisoning)
  - -Widespread in soil, anaerobic, spore-forming
  - Potentially fatal neurotoxin; denatured by adequate heating
- Scombroid poisoning<sup>3</sup>
  - Bacteria acting on amino acids in food
  - Toxin not denatured by heat or cold
  - Blood pressure, headaches, GI illness

- Vectorborne transmission
  - Biological vector: host species that transmits disease to another host species
  - Many vectors are arthropods (insects, arachnids) →
  - -But mammals can be vectors, too
- Summary: vectors and fomites



FIGURE 3.11 An Aedes aegypti mosquito, the vector for dengue fever, takes a blood meal from a human host.

Source: Reprinted courtesy of CDC Public Health Image Library. ID# 9252. Content providers CDC/Prof. Frank Hadley Collins, Dir., Cntr. for Global Health and Infectious Diseases, Univ. of Notre Dame. Available at: http://phil.cdc.gov/phil/home.asp. Accessed October 4, 2012.



FIGURE 3.12 The black-legged tick (*Ixodes scapularis*), shown here on a blade of grass, transmits Lyme disease among a number of mammalian hosts, including humans. *Source*: Reprinted courtesy of CDC Public Health Image Library. ID# 1669. Content providers CDC/Michael L. Levin, PhD. Available at: http://phil.cdc.gov/phil/home.asp. Accessed October 4, 2012.

Table 3.3 Comparison of Fomite, Mechanical Vector, and Biological Vector

| Transmitter of Disease                     | ls Transmitter<br>a Living Organism? | ls Transmitter<br>a Host Organism? | Example           |
|--------------------------------------------|--------------------------------------|------------------------------------|-------------------|
| Fomite                                     | no                                   | no                                 | handkerchief, toy |
| Mechanical vector                          | yes                                  | no                                 | housefly          |
| Biological vector<br>(vectorborne illness) | yes                                  | yes                                | mosquito          |

#### The transmission

- of infectious disease Managing vectorborne transmission
  - -Prevent human contact with vectors
    - Clothing, screens and nets
    - Insect repellents
  - -Reduce vector population
    - Pesticides
    - Modifications to the environment
    - Release of (genetically modified) sterile male insects to reduce reproduction

- The special case of DDT
  - -Organochlorine, identified in 1930s
  - -Widely used for mosquito control for 20 years before persistence appreciated
  - -Widely banned after wildlife effects and human risk appreciated
  - But targeted use for mosquito control in some less developed countries with high malaria rates is approved by WHO

- A complex web of transmission
  - -Distinctions among modes of transmission may be blurred
  - -Potential for use of pathogens as weapons by terrorists
  - -(Re-)emerging infectious diseases
    - HIV/AIDS, H5N1 influenza, Ebola hemorrhagic fever, SARS, prion diseases, dengue fever, hantavirus, *E. coli* O157:H7, drug-resistant malaria

#### Types of pathogens The Body's Defense against Pathogens The Transmission of Infectious Disease **Population-Level Impacts of Infectious Disease**

U.S. Regulatory Framework for Managing Infectious Disease Risk

#### Global Patterns of Infectious Disease Mortality

- Total ~12.3 million deaths in 2008<sup>4</sup>
  - Respiratory infections (29%), diarrheal disease (20%), and HIV/AIDS (14%) are leading infectious causes of death
- Worldwide, 22% of all deaths in 2008<sup>4</sup>
  - Highest in Africa (53%), Southeast Asia (27%), and Eastern Mediterranean (25%)

# Infectious disease as a cause of cancer

- Infection can increase cancer risk
  - E.g., chronic irritation  $\rightarrow$  cell proliferation
- Known infectious causes of cancer account for ~18% of cancers worldwide<sup>5</sup>
  - Liver (hepatitis B and C viruses, liver fluke)
  - Cervix (human papilloma virus)
  - Stomach (Helicobacter pylori bacterium)
- Higher percentage in lower-income countries

## Infectious disease as a cause of cancer





Source: Data from Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118:3030-3044, Table XI.

Types of pathogens The Body's Defense against Pathogens The Transmission of Infectious Disease Population-Level Impacts of Infectious Disease **U.S. Regulatory Framework for Managing** Infectious Disease Risk

# US regulatory framework for managing infectious disease

#### Vaccination

- CDC develops guidelines; states implement
- Isolation and quarantine<sup>6</sup>
  - Nationally, CDC; states within their borders
- Surveillance by CDC of listed infectious diseases; data collected by states
- Regulation of food supply, and treatment of sewage and drinking water, are also important

- 3.1 Infectious Disease
- **3.2 Poisons in Nature**
- 3.3 Allergy and Asthma
- 3.4 Natural Disasters
- 3.5 Naturally Occurring Radiation

- Contact with animals that use poison in selfdefense or to subdue prey<sup>7</sup>
  - Venomous snakes, scorpions, spiders
  - Stingrays, scorpionfishes
- Consumption of natural toxins inherent in plant or animal tissue
  - Castor beans (ricin)
  - Pufferfish (neurotoxins)

#### Poisons in nature



FIGURE 3.14 A World War II era soldier demonstrates the application of DDT to U.S. army personnel.

Source: Reprinted courtesy of CDC Public Health Image Library. ID# 2620. Content provider: CDC. Available at: http://phil.cdc.gov/phil/home.asp. Accessed October 4, 2012.

#### Poisons in nature

- Consumption of plant or animal tissue containing accumulated natural toxins
  - -Paralytic shellfish poisoning
  - -Ciguatera poisoning
- Consumption of fungal toxins found on food plants in the field
   –Ergot (mycotoxin)

### Poisons in nature

- Consumption of toxin (aflatoxin) produced by mold, mostly on grains in storage, especially corn, peanuts<sup>8,9,10</sup>
  - Potent carcinogen—hepatocellular carcinoma, most common primary liver cancer worldwide
  - Synergistic effect with hepatitis B exposure
  - Together account for most hepatocellular carcinoma in high-risk regions
- Consumption of natural toxins in mushroom (fungus) tissue

- Amanita phalloides (the "death cap")11

- 3.1 Infectious Disease
- 3.2 Poisons in Nature

#### 3.3 Allergy and Asthma

- 3.4 Natural Disasters
- 3.5 Naturally Occurring Radiation

### Allergy and asthma

- Allergen: foreign but harmless substance that elicits immune response (allergy)
  - First exposure  $\rightarrow$  sensitization
  - Later exposures  $\rightarrow$  allergic rhinitis
  - In asthmatic, later exposures  $\rightarrow$  asthma attack
- Asthma: chronic immune illness
  - Bronchi chronically inflamed and prone to sudden constriction
  - Asthma attack: increased inflammation, bronchoconstriction, overproduction of mucus
- Root causes and rising prevalence not well understood
   Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company www.jblearning.com

- 3.1 Infectious Disease
- 3.2 Poisons in Nature
- 3.3 Allergy and Asthma

#### **3.4 Natural Disasters**

#### 3.5 Naturally Occurring Radiation

### Natural disasters

- Biggest killers: droughts, earthquakes and tsunamis, storms and floods
  - -1912-1961: estimated 16 million deaths<sup>12</sup>
  - –1962-2011: estimated 5 million deaths<sup>12</sup>
- May create industrial hazards
   Fukushima nuclear power plant
- Tabulating deaths and other impacts can be difficult in less developed countries
- Recent events

#### Natural disasters

#### Table 3.6 A Snapshot of Four Recent Natural Disasters

| Type of Disaster,<br>Location         | Year | Setting                | Number<br>Killed | Number<br>Affected* | Affected/Killed |
|---------------------------------------|------|------------------------|------------------|---------------------|-----------------|
| Tsunami, Indian<br>Ocean/Indonesia    | 2004 | Less developed country | 226,096          | 2,321,700           | 10              |
| Hurricane (Katrina),<br>United States | 2005 | More developed country | 1833             | 500,000             | 273             |
| Earthquake, Haiti                     | 2010 | Less developed country | 222,570          | 3,700,000           | 17              |
| Earthquake and<br>tsunami, Japan      | 2011 | More developed country | 20,319           | 405,719             | 20              |

\*In need of assistance in the form of food, water, shelter, sanitation, or emergency medical care.

Source: Centre for Research on the Epidemiology of Disasters, Emergency Events Database (EM-DAT). Available at: www.emdat.be. Accessed March 21, 2012.

- 3.1 Infectious Disease
- 3.2 Poisons in Nature
- 3.3 Allergy and Asthma
- 3.4 Natural Disasters

#### 3.5 Naturally Occurring Radiation

#### **Radiation Basics**

#### Radiation Exposures and Health Impacts

### Radiation & radioactive decay

- Radiation—energy traveling as particles or waves
- Radioactive decay—a source of radiation
  - Some chemical isotopes are unstable (radioactive)
  - They achieve a more stable configuration by ejecting part of nucleus (radioactive decay)
  - Ejected particles:
    - Alpha particle = 2 protons + 2 neutrons
    - Beta = 1 electron (and neutron  $\rightarrow$  proton)

### Radioactive decay

- -With change in number of protons, one element decays into different element
- -Decays occur in characteristic series
- -Each element has characteristic half-life
- -In decay chain of uranium-238, radon and daughters are of special concern

#### Radioactive decay

#### Table 3.7 The Decay Chain of Uranium-238

| Particle Ejected |      |                     | Half-life |         |       |              |  |
|------------------|------|---------------------|-----------|---------|-------|--------------|--|
| Alpha            | Beta | Radioactive Isotope | Seconds   | Minutes | Days  | Years        |  |
| x                |      | Uranium-238         |           |         |       | 4.47 billior |  |
|                  | x    | Thorium-234         |           |         | 24.10 |              |  |
|                  | x    | Protactinium-234    |           | 1.17    |       |              |  |
| x                |      | Uranium-234         |           |         |       | 245,500      |  |
| x                |      | Thorium-230         |           |         |       | 75,400       |  |
| х                |      | Radium-226          |           |         |       | 1599         |  |
| x                |      | Radon-222           |           |         | 3.823 |              |  |
| x                |      | Polonium-218        |           | 3.04    |       |              |  |
|                  | х    | Lead-214            |           | 26.9    |       |              |  |
|                  | x    | Bismuth-214         |           | 19.7    |       |              |  |
| x                |      | Polonium-214        | 0.000164  |         |       |              |  |
|                  | х    | Lead-210            |           |         |       | 22.6         |  |
|                  | x    | Bismuth-210         |           |         | 5.01  |              |  |
| x                |      | Polonium-210        |           |         | 138.4 |              |  |
|                  |      | Lead-206 (stable)   |           |         |       |              |  |

Source: Data from Holden N. Table of the isotopes. In: Lide D, ed. CRC Handbook of Chemistry and Physics. 84th (2003-2004) ed. Boca Raton, Fla: CRC Press; 2003:11-50-11-197.

### **Electromagnetic radiation**

- Energy in wave form; wavelength varies
- Shorter wavelength  $\rightarrow$  higher energy
- Gamma radiation: short-wavelength electromagnetic radiation; often released with alpha or beta particle
- Electromagnetic spectrum: all EM radiation, in order of wavelength

### **Electromagnetic radiation**



FIGURE 3.17 Electromagnetic radiation of shorter and longer wavelengths.

## Ionizing and non-ionizing radiation

- Functional distinction: ionizing radiation is radiation that, when it strikes matter, has enough energy to knock an electron out of orbit, creating an ion
- Ionization can lead to damage to cells
- Alpha, beta, and gamma radiation are all ionizing

### Ionizing and non-ionizing radiation



- Grays: intensity of exposure (energy delivered per gram of tissue)
- Impact of dose in Grays depends on
  - Relative biological effectiveness
     (damage per unit of energy delivered)
  - –Dose (Grays) x RBE = dose (Sieverts)
  - -RBE of alpha > RBE of beta > RBE of gamma  $\rightarrow$

Table 3.8An Example Showing the Relationship Between Dose in Grays and Dose inSieverts for Alpha, Beta, and Gamma Radiation

| Type of<br>Radiation | Description                                 | Dose in<br>Grays | Relative Biological<br>Effectiveness (RBE) | Equivalent Dose in<br>Sieverts |
|----------------------|---------------------------------------------|------------------|--------------------------------------------|--------------------------------|
| Alpha                | 2 protons +<br>2 neutrons                   | 2                | 10                                         | 20                             |
| Beta                 | 1 electron                                  | 2                | 5                                          | 10                             |
| Gamma                | High-energy<br>electromagnetic<br>radiation | 2                | 1                                          | 2                              |

- Impact of dose in Grays also depends on whether exposure is internal or external
  - Internal: alpha, beta, gamma are hazards
  - -External: larger particle penetrates less

| Type of<br>Radiation | Description                                 | Internal<br>Hazard? | External<br>Hazard? | Effective<br>Shielding    | Examples<br>of Emitters              |
|----------------------|---------------------------------------------|---------------------|---------------------|---------------------------|--------------------------------------|
| Alpha                | 2 protons<br>+ 2 neutrons                   | Yes                 | No                  | Dead skin<br>cells, paper | Uranium-238,<br>radon and progeny    |
| Beta                 | 1 electron                                  | Yes                 | Yes                 | Aluminum,<br>plastic      | Strontium-90,<br>iodine-131          |
| Gamma                | High-energy<br>electromagnetic<br>radiation | Yes                 | Yes                 | Lead,<br>concrete         | (Often accompanies<br>alpha or beta) |

# Biological effects of ionizing radiation

- High-level exposure → radiation sickness;
   frequently fatal
  - Death of cells in central nervous system, gastrointestinal tract, bone marrow
- High-level (and thus also low-level)
   exposure → increased risk of cancer<sup>13</sup>
  - Leukemia; breast, thyroid, ovary, bladder, lung, colon, liver, stomach, and nonmelanoma skin cancer

#### Radiation Basics

#### **Radiation Exposures and Health Impacts**

# Natural sources of exposure to radiation

- Non-ionizing UV-A and UV-B radiation in sunlight
- Cosmic radiation (ionizing) from outer space
- Inhalation of radon
  - -Gas, therefore mobile
  - Short-lived; rapid series of radioactive decays<sup>14</sup>

Human health impacts of naturally occurring radiation

- Ionizing radiation
  - -Increased risk of cancers listed above
- Non-ionizing UV radiation
  - Skin cancer (squamous and basal cell carcinomas, malignant melanoma)<sup>15</sup>
  - -Cataracts<sup>16</sup>
  - Immune suppression<sup>17</sup>

#### References

- 1. US Food and Drug Administration. Foodborne Pathogenic Microorganisms and Natural Toxins Handbook, 2006. Available at: http://vm.cfsan.fda.gov/~mow/intro.html. Accessed March 20, 2007.
- 2. US Centers for Disease Control and Prevention. *Escherichia coli* O157:H7. Available at: http://www.cdc.gov/ncidod/dbmd/diseaseinfo/escherichiacoli\_g.htm. Accessed March 24, 2007.
- 3. US Food and Drug Administration. Foodborne Pathogenic Microorganisms and Natural Toxins Handbook: Scombrotoxin. Available at: http://www.cfsan.fda.gov. Accessed May 25, 2006.
- 4. World Health Organization. Causes of Death 2008 Summary Tables. May 2011. Available at: www.who.int/gho/mortality\_burden\_disease/global\_burden\_disease\_DTH6\_2008. xls. Accessed March 19, 2012.
- 5. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118:3030–3044.
- 6. US Centers for Disease Control and Prevention. *Fact Sheet: Isolation and Quarantine, 2004.* Available at: http://www.cdc.gov/NCIDOD/dg/sars\_facts/isolationguarantine.pdf. Accessed July 15, 2006.
- 7. Russell FE. Toxic effects of animal toxins. In: Klaassen CD, ed. Casarett and Doull's Toxicology: The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill; 1996:801–839.
- 8. Kotsonis FN, Burdock GA, Flamm WG. Food toxicology. In: Klaassen CD, ed. Casarett and Doull's Toxicology: The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill; 1996:909–949.
- 9. Yu MC, Yuan J-M. Environmental factors and risk for hepatocellular carcinoma. Gastroenterology. 2004;127:S72–S78.
- 10. Omer RE, Kuijsten A, Kadaru AMY, Kok FJ, Idris MO, El Khidir IM, et al. Population attributable risk of dietary aflatoxins and hepatitis B virus infection with respect to hepatocellular carcinoma. *Nutr Cancer.* 2004;48(1):15–21.
- 11. Norton S. Toxic effects of plants. In: Klaassen CD, ed. Casarett and Doull's Toxicology: The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill; 1996:841–853.
- 12. World Health Organization, Centre for Research on the Epidemiology of Disasters. Emergency Events Database (EM-DAT) [data]. Available at: http://www.emdat.be/.Accessed April 30, 2012.
- 13. National Academy of Sciences. Biological Effects of Ionizing Radiation (BEIR) VII: Health Risks from Exposure to Low Levels of Ionizing Radiation. Washington, DC: National Academies Press; 2005.
- 14. Holden N. Table of the isotopes. In: Lide D, ed. CRC Handbook of Chemistry and Physics. 84th (2003–2004) ed. Boca Raton, Fla: CRC Press; 2003:11-50-11-197.
- 15. Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photoch Photobio. 2001;B:8–18.
- 16. McCarty CA. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts. *Dev Ophthalmol.* 2002;35:21–31.
- 17. Sleijffers A, Garssen J, Van Loveren H. Ultraviolet radiation, resistance to infectious diseases, and vaccination responses. *Methods*. 2002;28:111–121.