CHAPTER 14 VARIATIONS OF INHERITANCE

- CODOMINANCE: INCOMPLETE
- BLENDING TRAIT EFFECT
- RED/WHITE/PINK FLOWERS
- RED/WHITE/ROAN CATTLE COLOR
- P1 RR X rr = F1= 100% Rr
- P2 Rr X Rr = F2 = 25% RR, 50% Rr, and 25% rr.
 - GR: 1:2:1, PR: 1:2:1 (blending effect Rr)

Figure 14.9 Incomplete dominance in snapdragon color

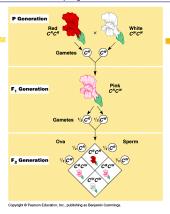


Figure 14.9x Incomplete dominance in carnations

CODOMINANCE: MULTIPLE ALLES

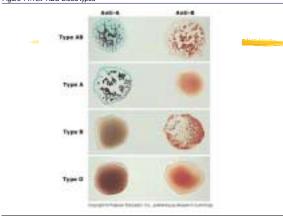
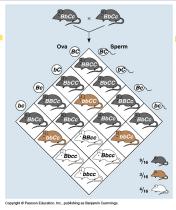

- **ABO BLOOD GROUPS**
- SURFACE ANTIGENS
- TYPE A = IAIA, IAi
- TYPE B = IBIB, Ibi
- TYPE AB= IAIB
- TYPE 0 = ii
- problems: TYPE A X TYPE B = ?

Figure 14.10 Multiple alleles for the ABO blood groups

(a) Phenotype (blood group)	(b) Genotypes (see p.258)	(c) Antibodies present in blood serum	(d) Results from adding red blood cells from groups below to serum from groups at left
			A B AB O
Α	I ^A I ^A or I ^A I	Anti-B	
В	I ^B I ^B or I ^B i	Anti-A	
АВ	I _A I _B	_	
o	ii	Anti-A Anti-B	

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.


Figure 14.10x ABO blood types

MULTIPLE EFFECTS OF SINGLE GENES

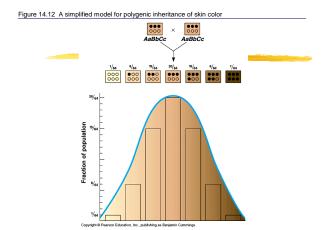
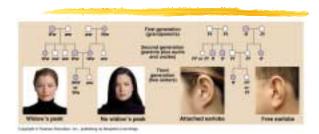

- EPISTASIS:
- EXPRESSION IN PIGMENT PRODUCTION/COAT COLOR IN ANIMALS
- SHARPEI DOGS/ MELANIN PROD.
- WHITE, CREAM, BLACK, AUBURN
- SS, Ss, ss mixed expression. Other gene?

Figure 14.11 An example of epistasis

MULTIPLE EFFECTS OF SINGLE GENES

- PENETRANCE: ALL OR NONE
- MODE OF EXPRESSIVITY
- PP, Pp = PURPLE, pp = WHITE
- **CONTINUOUS VARIATION:**
- HEIGHT, SKIN COLOR, BODY BUILD
- RANGE OF PHENOTYPES



Multiple Effects of Single Genes

- Gene Expression: environment
- RABBITS/NORTH/WHITE
- RABBITS/SOUTH/DARKER
- TEMPERATURE RELATED
- AQUATIC PLANTS: CHANGE LEAF MORPHOLOGY WITH CO2 CHANGES.

Figure 14.13 The effect of environment of phenotype

MULTIPLE EFFECTS OF SINGLE GENES

- <u>PLEIOTROPY</u>
- SINGLE GENE EXERTS EFFECTS ON UNRELATED PHENOTYPE.
- SICKLE CELL DISEASE
- Hb HEMOGLOBIN, RBC SHAPE
- HbAHbA = normal Hb
- HbSHbS = sickle cell
- HbA HbS = carrier/Malaria

Figure 14.15 Pleiotropic effects of the sickle-cell allele in a homozygote

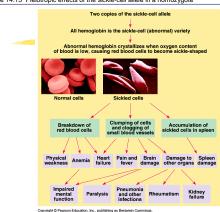
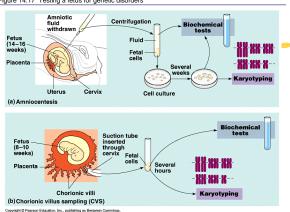



Figure 14.16 Large families provide excellent case studies of human genetics

Figure 14.17 Testing a fetus for genetic disorders

