CHAPTER 11 PROJECT ANALYSIS AND EVALUATION

Answers to Concepts Review and Critical Thinking Questions

- 1. Forecasting risk is the risk that a poor decision is made because of errors in projected cash flows. The danger is greatest with a new product because the cash flows are probably harder to predict.
- 2. With a sensitivity analysis, one variable is examined over a broad range of values. With a scenario analysis, all variables are examined for a limited range of values.
- **3.** It is true that if average revenue is less than average cost, the firm is losing money. This much of the statement is therefore correct. At the margin, however, accepting a project with marginal revenue in excess of its marginal cost clearly acts to increase operating cash flow.
- 4. It makes wages and salaries a fixed cost, driving up operating leverage.
- **5.** Fixed costs are relatively high because airlines are relatively capital intensive (and airplanes are expensive). Skilled employees such as pilots and mechanics mean relatively high wages which, because of union agreements, are relatively fixed. Maintenance expenses are significant and relatively fixed as well.
- 6. From the shareholder perspective, the financial break-even point is the most important. A project can exceed the accounting and cash break-even points but still be below the financial break-even point. This causes a reduction in shareholder (your) wealth.
- 7. The project will reach the cash break-even first, the accounting break-even next and finally the financial break-even. For a project with an initial investment and sales after, this ordering will always apply. The cash break-even is achieved first since it excludes depreciation. The accounting break-even is next since it includes depreciation. Finally, the financial break-even, which includes the time value of money, is achieved.
- 8. Soft capital rationing implies that the firm as a whole isn't short of capital, but the division or project does not have the necessary capital. The implication is that the firm is passing up positive NPV projects. With hard capital rationing the firm is unable to raise capital for a project under any circumstances. Probably the most common reason for hard capital rationing is financial distress, meaning bankruptcy is a possibility.
- 9. The implication is that they will face hard capital rationing.

Solutions to Questions and Problems

<u>Basic</u>

3.

- 1. *a*. Total variable costs = \$0.74 + 2.61 = \$3.35
 - b. Total costs = variable costs + fixed costs = 3.35(300,000) + 610,000 = 1,615,000c. $Q_C = 610,000 / (7.00 - 3.35) = 167,123$ units
 - $Q_A = (\$610,000 + 150,000) / (\$7.00 3.35) = 208,219$ units
- 2. Total costs = (\$10.94 + 32)(140,000) + \$800,000 = \$6,811,600 Marginal cost = cost of producing one more unit = \$42.94 Average cost = total cost/total quantity = \$6,811,600/140,000 = \$48.65 Minimum acceptable total revenue = 10,000(\$42.94) = \$429,400. Additional units should be produced only if the cost of producing those units can be recovered.

		Base Case	Lower Bound	Upper Bound
Unit sales		90,000	76,500	103,500
Price/unit		\$1,850	\$1,572.50	\$2,127.50
Variable cost/unit		\$160.00	\$136.00	\$184.00
Fixed cost	S	\$7,000,000	\$5,950,000	\$8,050,000
			Unit	
<u>Scenario</u>	Unit Sales	Unit Price	Variable Cost	Fixed Costs
Base	90,000	\$1,850	\$160.00	\$7,000,000
Best	103,500	\$2,127.50	\$136.00	\$5,950,000
Worst	76,500	\$1,572.50	\$184.00	\$8,050,000

- 4. An estimate for the impact of changes in price on the profitability of the project can be found from the sensitivity of NPV with respect to price: $\Delta NPV/\Delta P$. This measure can be calculated by finding the NPV at any two different price levels and forming the ratio of the changes in these parameters. Whenever a sensitivity analysis is performed, all other variables are held constant at their base-case values.
- 5. D = \$924,000/6 = \$154,000 per year а. $Q_A = (\$800,000 + 154,000)/(\$34 - 19) = 63,600$ units DOL = 1 + FC/OCF = 1 + FC/D = 1 + [\$800,000/\$154,000] = 6.195 $OCF_{base} = [(P - v)Q - FC](1 - t) + tD$ b. = [(\$34 - 19)(130,000) - 800,000](0.65) + 0.35(\$154,000) = \$801,400 $NPV_{base} = -\$924,000 + \$801,400(PVIFA_{15\%,6}) = \$2,108,884.43$ Say O = 135,000: $OCF_{new} = [(\$34 - 19)(135,000) - 800,000](0.65) + 0.35(\$154,000) = \$850,150$ $NPV_{new} = -\$924,000 + \$850,150(PVIFA_{15\%,6}) = \$2,293,377.96$ $\Delta NPV/\Delta S = (\$2,293,377.96 - 2,108,884.43)/(135,000 - 130,000) = +\36.899 If sales were to drop by 500 units, then NPV would drop by 36.899(500) = 18,449.35 $v = $18: OCF_{new} = [($34 - 18)(130,000) - 800,000](0.65) + 0.35($154,000) = $885,900$ с. $\Delta OCF/\Delta v = (\$801,400 - 885,900)/(\$19 - 18) = -\$84,500$ If variable costs fell by \$1 then, OCF would rise by \$84,500

B-110 SOLUTIONS

- 6. $OCF_{best} = \{[(\$34)(1.1) (\$19)(0.9)](130K)(1.1) 800K(0.9)\}(0.65) + 0.35(154K) = \$1,472,785$ $NPV_{best} = -\$924,000 + \$1,472,785(PVIFA_{15\%,6}) = \$4,649,729.34$ $OCF_{worst} = \{[(\$34)(0.9) - (\$19)(1.1)](130K)(0.9) - 800K(1.1)\}(0.65) + 0.35(154K) = \$219,585$ $NPV_{worst} = -\$924,000 + \$219,585(PVIFA_{15\%,6}) = -\$92,984.37$
- 7. (1): $Q_C = \$16M/(\$2,000 1,675) = 49,231$ $Q_A = (\$16M + 7M)/(\$2,000 1,675) = 70,769$ (2): $Q_C = \$60,000/(\$40 32) = 7,500$ $Q_A = (\$60,000 + 150,000)/(\$40 32) = 26,250$ (3): $Q_C = \$500/(\$7 2) = 100$ $Q_A = (\$500 + 420)/(\$7 2) = 184$
- 8. (1): $Q_A = 125,400 = (\$175,000 + D)/(\$34 26)$ D = \$828,200 (2): $Q_A = 140,000 = (\$3M + 1.25M)/(P - \$50)$ P = \$80.36 (3): $Q_A = 5,263 = (\$145,000 + 90,000)/(\$100 - v)$ v = \$55.35
- 9. $Q_A = [\$4,000 + (\$9,000/3)]/(\$65 33) = 219$ NPV = 0 implies $\$9,000 = OCF(PVIFA_{16\%,3})$ $Q_F = (\$4,000 + \$4,007.32)/(\$65 - 33) = 250$ $Q_C = \$4,000/(\$65 - 33) = 125$ OCF = \$4,007.32DOL = 1 + (\$4,000/\$4,007.32) = 1.998
- 10. $Q_C = FC/(P-v); 12,000 = \$110,000/(P \$20); P = \29.17 $Q_A = (FC+D)/(P-v); 18,000 = (\$110,000 + D)/(\$29.17 - 20); D = \$55,060$ I = (D)(N); I = 5(\$55,060) = \$275,300 $OCF = \$275,300/(PVIFA_{18\%,5}) = \$88,034.84$ $Q_f = (\$110,000 + 88,034.84)/(\$29.17 - 20) = 21,596$
- 11. DOL = $\Delta OCF / \Delta Q$; $\Delta OCF = 3[(36,000 30,000)/30,000] = 60.00\%$ The new level of operating leverage is lower since FC/OCF is smaller.
- **12.** DOL = 3 = 1 + \$150,000/OCF;
New OCF = \$75,000(1.50) = \$112,500OCF = \$75,000
New DOL = 1 + (\$150,000/\$112,500) = 2.333
- **13.** DOL = 1 + (\$30,000/\$63,000) = 1.4762 $\% \Delta OCF = DOL(\% \Delta Q) = 1.4762(.0429) = 6.33\%$ DOL at 7,300 units = 1 + (\$30,000/\$66,985.71) = 1.4478 $\% \Delta Q = (7,300 - 7,000)/7,000 = 4.29\%$ New OCF = \$63,000(1.0633) = \$66,985.71
- 14. DOL = 3.5 = 1 + FC/OCF; FC = (3.5 1)\$9,000 = \$22,500
 %ΔQ = (11,000 10,000)/10,000 or (9,000 10,000)/10,000 = ±10.0%
 %ΔOCF = 3.5(±10.0%) = 35%
 OCF at 11,000 units = \$9,000(1.35) = \$12,150; OCF at 9,000 units = \$9,000(0.65) = \$5,850
- **15.** DOL at 11,000 units = 1 + 22,500/12,150 = 2.8519DOL at 9,000 units = 1 + 22,500/5,850 = 4.8462

<u>Intermediate</u>

16.	а.	IRR = 0%;	payback = N years;	NPV = I [(1/N)(PVIFA _{r %,N}) - 1]
	b.	IRR = -100%;	payback = ∞ ;	NPV = -I
	с.	IRR = $r \%$;	payback < N years;	NPV = 0

B-112 SOLUTIONS

- **17.** OCF @ 110,000 units = [(\$26 18)(110,000) 185,000](0.66) + 0.34(\$420,000/3) = \$506,300OCF @ 111,000 units = [(\$26 - 18)(111,000) - 185,000](0.66) + 0.34(\$420,000/3) = \$511,580Sensitivity = Δ OCF/ Δ Q = (\$511,580 - 506,300)/(111,000 - 110,000) = +\$5.28OCF will increase by \$5.28 for every additional unit sold.
- **18.** DOL @ 110,000 units = 1 + (\$185,000/\$506,300) = 1.3654 Q_a = [\$185,000 + (\$420,000/3)]/(\$26 - 18) = 40,625 DOL @ 40,625 units = 1 + (\$185,000/\$140,000) = 2.3214
- - b. Say FC are \$160,000: OCF = [(\$19,000 - 14,000)(160) - \$160,000](0.65) + 0.35(\$680,000/4) = \$475,500 NPV = -\$680,000 + \$475,500(PVIFA_{15%,4}) = \$677,542.21 ΔNPV/ΔFC = (\$677,542.21 - 696,099.57)/(\$160,000 - 150,000) = -1.856 For every dollar FC increase, NPV falls by \$1.86.
 - c. $Q_c = \frac{150,000}{(\$19,000 14,000)} = 30$
 - *d*. $Q_a = [\$150,000 + (\$680,000/4)]/(\$19,000 14,000) = 64$ At this level of output, DOL = 1 + (\$150,000/\$170,000) = 1.8824 For each 1% increase in unit sales, OCF will increase by 1.8824%.
- **20.** The marketing study and the research and development are both sunk costs and should be ignored.

 $\times 50,000 = $12,000,000$

Sales	
New clubs	$600 \times 50,000 = 30,000,000$
Exp. clubs	$1,000 \times (-12,000) = -12,000,000$
Cheap clubs	$300 \times 10,000 = 3,000,000$
	\$21,000,000

Var. costs	
New clubs	\$240

Exp. clubs	\$550 × (-12,000) =	-6,600,000
Cheap clubs	\$100 × 10,000 =	1,000,000
		\$6,400,000

Sales	\$21,000,000
Variable costs	6,400,000
Costs	7,000,000
Depreciation	2,200,000
EBIT	5,400,000
Taxes	2,160,000

CHAPTER 11 B-113

Net income <u>\$ 3,240,000</u>

B-114 SOLUTIONS

 $\begin{aligned} & \text{OCF} = \text{EBIT} + \text{D} - \text{Taxes} = \$5,400,000 + 2,200,000 - 2,160,000 = \$5,440,000 \\ & \text{Payback period} = 2 + \$5.42\text{M}/\$5.44\text{M} = 2.996 \text{ years} \\ & \text{NPV} = -\$15.4\text{M} - \$0.9\text{M} + \$5.44\text{M}(\text{PVIFA}_{14\%,7}) + \$0.9/1.14^7 = \$7,388,051.92 \\ & \text{IRR} = -\$15.4\text{M} - \$0.9\text{M} + \$5.44\text{M}(\text{PVIFA}_{1\text{RR}\%,7}) + \$0.9/\text{IRR}^7 = 27.59\% \end{aligned}$

21.		Base Case	Lower Bound	Upper Bound
	Unit sales (new)	50,000	45,000	55,000
	Price (new)	\$600	\$540	\$660
	VC (new)	\$240	\$216	\$264
	Fixed costs	\$7,000,000	\$6,300,000	\$7,700,000
	Sales lost (expensive)	12,000	10,800	13,200
	Sales gained (cheap)	10,000	9,000	11,000
	Variable cost/unit	\$13,000	\$11,700	\$14,300
	Fixed costs	\$125,000	\$112,500	\$137,500

Best case

Sales	
New clubs	$660 \times 55,000 = 36,300,000$
Exp. clubs	$1,000 \times (-10,800) = -10,800,000$
Cheap clubs	$300 \times 11,000 = 3,300,000$
	\$28,800,000

Var. costs

New clubs	$216 \times 55,000 = 11,880,000$
Exp. clubs	$550 \times (-10,800) = -5,940,000$
Cheap clubs	$100 \times 11,000 = 1,100,000$
	\$7,040,000

Sales	\$28,800,000
Variable costs	7,040,000
Costs	6,300,000
Depreciation	2,200,000
EBIT	13,260,000
Taxes	5,304,000
Net income	<u>\$ 7,956,000</u>

OCF = EBIT + D - Taxes = \$13,260,000 + 2,200,000 - 5,304,000 = \$10,156,000 $NPV = -\$15.4M - \$0.9M + \$10.156M(PVIFA_{14\%,7}) + \$0.9/1.14^7 = \$27,611,697.54$

Worst case

Sales	
New clubs	$540 \times 45,000 = 24,300,000$
Exp. clubs	$1,000 \times (-13,200) = -13,200,000$
Cheap clubs	$300 \times 9,000 = 2,700,000$

CHAPTER 11 B-115

\$13,800,000

B-116 SOLUTIONS

Var. costs	
New clubs	$264 \times 45,000 = 11,880,000$
Exp. clubs	$550 \times (-13,200) = -7,260,000$
Cheap clubs	$100 \times 9,000 = 900,000$
	\$5,520,000

Sales	\$13,800,000	
Variable costs	5,520,000	
Costs	7,700,000	
Depreciation	2,200,000	
EBIT	- 1,620,000	
Taxes	648,000	*assumes a tax credit
Net income	<u>-\$ 972,000</u>	

 $\begin{aligned} OCF &= EBIT + D - Taxes = -\$1,620,000 + 2,200,000 + 648,000 = \$1,228,000 \\ NPV &= -\$15.4M - \$0.9M + \$1.228M(PVIFA_{14\%,7}) + \$0.9/1.14^7 = -\$10,674,288.07 \end{aligned}$

22. Price = \$700

Sales	
New clubs	$700 \times 50,000 = 35,000,000$
Exp. clubs	$1,000 \times (-12,000) = -12,000,000$
Cheap clubs	$300 \times 10,000 = 3,000,000$
	\$26,000,000

Var. costs

New clubs	$240 \times 50,000 = 3$	\$12,000,000
Exp. clubs	\$550 × (-12,000) =	-6,600,000
Cheap clubs	\$100 × 10,000 =	1,000,000
		\$6,400,000

Sales	\$26,000,000
Variable costs	6,400,000
Costs	7,000,000
Depreciation	2,200,000
EBIT	10,400,000
Taxes	4,610,000
Net income	<u>\$ 6,240,000</u>

 $\begin{aligned} \text{OCF} &= \text{EBIT} + \text{D} - \text{Taxes} = \$10,400,000 + 2,200,000 - 4,160,000 = \$8,440,000 \\ \text{NPV} &= -\$15.4\text{M} - \$0.9\text{M} + \$8.44\text{M}(\text{PVIFA}_{14\%,7}) + \$0.9/1.14^7 = \$20,252,966.43 \\ \Delta \text{NPV} / \Delta \text{P} &= (\$20.252.966.43 - 7,388,051.92) / (\$700 - 600) = \$128,649.15 \\ \text{For every dollar increase (decrease) in the price of the clubs, the NPV increases (decreases) by $128,649.15. \end{aligned}$

Quantity $= 49,000$	
Sales	
New clubs	$600 \times 49,000 = 29,400,000$
Exp. clubs	$1,000 \times (-2,000) = -12,000,000$
Cheap clubs	$300 \times 10,000 = 3.000,000$
•	\$20,400,000
Var costs	
New clubs	\$240 × 49 000 - \$11 760 000
Evn clubs	(12,000) = (11,700,000)
Exp. ciuos	$330 \times (-12,000) = -0,000,000$
Cheap clubs	$100 \times 10,000 = 1,000,000$
	\$6,160,000
Sales	\$20.400.000
Variable costs	6.160.000
Costs	7,000,000
Depreciation	2,200,000
EBIT	5,040,000
Taxes	2,016,000
Net income	\$ 3,024,000

 $\begin{aligned} \text{OCF} &= \text{EBIT} + \text{D} - \text{Taxes} = \$5,040,000 + 2,200,000 - 2,016,000 = \$5,224,000 \\ \text{NPV} &= -\$15.4\text{M} - \$0.9\text{M} + \$5.224(\text{PVIFA}_{14\%,7}) + \$0.9/1.14^7 = \$6,461,778.07 \\ \Delta \text{NPV} / \Delta \text{Q} &= (\$6,461,778.07 - 7,388,051.92) / (49,000 - 50,000) = \$926.27 \\ \text{For an increase (decrease) of one set of clubs sold per year, the NPV increases (decreases) by $$926.27. \end{aligned}$

<u>Challenge</u>

- 23. *a*. From the tax-shield definition of OCF: $OCF = [(P-v)Q - FC](1-t) + tD; \quad (OCF - tD)/(1-t) = (P-v)Q - FC$ $\{FC + [(OCF - tD)/(1-t)]\}/(P-v) = Q$

 - c. At the accounting break-even point, net income = 0, so OCF = NI + D = D $Q_a = {FC + [(D - tD)/(1 - t)]}/(P - v) = (FC + D)/(P - v) = (FC + OCF)/(P - v)$ The tax rate has cancelled out in this case.

24.
$$DOL = \% \Delta OCF / \% \Delta Q = \{ [(OCF_1 - OCF_0)/OCF_0] / [(Q_1 - Q_0)/Q_0] \} \\ OCF_1 = [(P - v)Q_1 - FC](1 - t) + tD; OCF_0 = [(P - v)Q_1 - FC](1 - t) + tD; \\ OCF_1 - OCF_0 = (P - v)(1 - t)(Q_1 - Q_0) \\ (OCF_1 - OCF_0)/OCF_0 = (P - v)(1 - t)(Q_1 - Q_0) / OCF_0; \\ [(OCF_1 - OCF_0)/OCF_0][(Q_1 - Q_0)/Q_0] = [(P - v)(1 - t)Q_0]/OCF_0 = \\ [OCF_0 - tD + FC(1 - t)]/OCF_0; \\ DOL = 1 + [FC(1 - t) - tD]/OCF_0$$

B-118 SOLUTIONS

- **25.** *a*. OCF = [(\$230 200)(35,000) 300,000](0.62) + 0.38(\$1,500,000M/5) = \$579,000NPV = $-\$1.5M - 450K + 579K(PVIFA_{13\%,5}) + [\$450K + 500K(1 - .38)]/1.13^5$ = \$498,974.45
 - b. $OCF_{worst} = \{[(\$230)(0.9) 200](35,000) 300,000\}(0.62) + 0.38(\$1,725,000/5) \\ = \$97,000$ $NPV_{worst} = -\$1,725,000 - 450K(1.05) + \$97,000(PVIFA_{13\%,5}) + [\$450K(1.05) + \$500K(0.85)(1 - .38)]/1.13^5 = -\$1,456,857.26$ $OCF_{best} = \{[\$230(1.1) - 200](35,000) - 300,000\}(0.62) + 0.38(\$1,275,000/5) \\ = \$1,061,000$ $NPV_{best} = -\$1,275,000 - 450K(0.95) + 1,061,000(PVIFA_{13\%,5}) + [\$450K(0.95) + \$500K(1.15)(1 - .38)]/1.13^5 = \$2,454,806.16$
- 26. Q = 36,000: OCF = [(\$230 200)(36,000) 300,000](0.62) + 0.38(\$1,500,000M/5) = \$597,600 $\Delta OCF/\Delta Q = (\$597,600 - 579,000)/(36,000 - 35,000) = +\18.60 $NPV = -\$1.5M - 450K + 597.6K(PVIFA_{13\%,5}) + [\$450K + \$500K(1 - .38)]/1.13^5 = \$564,394.95$ $\Delta NPV/\Delta Q = (\$564,394.95 - 498,974.45)/(36,000 - 35,000) = +\65.42 You wouldn't want Q to fall below the point where NPV = 0: $\$498,974.45 = \$65.42(\Delta Q)$; $\Delta Q = 7,627$; $Q_{min} = 35,000 - 7,627 = 27,373$
- **27.** At Q_c , OCF = 0: 0 = [(230 200)Q_c 300,000](0.62) + 0.38(1,500,000/5); Q_c = 3,871 Q_a = [300,000 + (1,500,000/5)]/(230 200); Q_a = 20,000 From #26, Q_f = 27,373
- **28.** DOL = 1 + [300,000(1 0.38) 0.38(\$1,500,000/5)]/ \$579,000 = 1.12435Thus a 1% rise leads to a 1.12435% rise in OCF. If Q rises to 36,000, then $\Delta Q = (36,000 - 35,000)/35,000 = 2.857\%$, so $\Delta \Delta OCF = 2.857\%(1.12435) = 3.212\%$ From #26, $\Delta OCF/OCF = (\$597,600 - 579,000)/\$579,000 = 0.03212$ In general, if Q rises by 1 unit, OCF rises by 3.212%.