

Chapter 34

The Laws of Electromagnetism Maxwell's Equations Electromagnetic Radiation Laws of Geometrical Optics

Maxwell's Equations

$ \bigoplus_{\substack{\text{closed}\\\text{surface}}} \vec{E} \bullet d\vec{A} = \frac{q_{\text{inclose}}}{\varepsilon_o} $	Gauss's Law for Electricity
$\oint_{\substack{\text{closed}\\ \text{surface}}} \vec{B} \bullet d\vec{A} = 0$	Gauss's Law for Magnetism
$\oint_{\substack{closed\\loop}} \vec{E} \bullet d\vec{s} = -\frac{d\Phi_B}{dt} = EMF$	Faraday's Law
$\oint_{\substack{\text{closed}\\\text{loop}}} \vec{B} \bullet d\vec{s} = \mu_o I_{\text{inclosed}} + \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$	Ampere's Law as Modified by Maxwell

Maxwell's Equations - Static

$\oint_{\substack{\text{closed}\\\text{surface}}} \vec{E} \bullet d\vec{A} = \frac{q_{\text{inclose}}}{\varepsilon_o}$	Gauss's Law for Electricity
$ \bigoplus_{\substack{\text{closed}\\\text{surface}}} \vec{B} \bullet d\vec{A} = 0 $	Gauss's Law for Magnetism

Symmetry, but we have no magnetic monopoles.

If we had magnetic monopoles, then $\bigoplus_{\substack{closed \\ surface}} \vec{B} \bullet d\vec{A} = \mu_o \rho_{inclose}$

But, we have not detected any magnetic monopoles, so $\bigoplus_{\substack{\text{closed}\\\text{surface}}} \vec{B} \bullet d\vec{A} = 0$

Maxwell's Equations - Dynamic

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$$
Faraday's Law
$$\oint \vec{B} \cdot d\vec{s} = \mu_o I_{inclosed} + \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$$
Ampere's Law as Modified
by Maxwell

Again we have symmetry in the E and B field, but we lack magnetic monopoles.

If we had monopoles Faraday's Law would become

$$\oint_{loop} \vec{E} \cdot d\vec{s} = -\frac{I_{\rho}}{\varepsilon_{o}} - \frac{d\Phi_{B}}{dt} \qquad \text{Where } I_{\rho} = d\rho/dt, \text{ i.e. the flow of magnetic monopoles.}}$$

Maxwell's Equations - Coupling

Consider Maxwell's dynamic equations in vacuum with no free charges or currents.

$$\oint_{\substack{\text{closed}\\\text{loop}}} \vec{E} \bullet d\vec{s} = -\frac{d\Phi_B}{dt}, \ \Phi_B = \int \vec{B} \bullet d\vec{A}$$
(1)
$$\oint_{\substack{\text{closed}\\\text{loop}}} \vec{B} \bullet d\vec{s} = \mu_o \varepsilon_o \frac{d\Phi_E}{dt}, \ \Phi_E = \int \vec{E} \bullet d\vec{A}$$
(2)

How would a time changing **B** field effect an **E** field in vacuum (1) and how would a time changing **E** field effect an **B** field in vacuum (2)?

Maxwell's Equations - Coupling

Maxwell's Equations - Coupling

Also consider the electric field at another position, $x+\Delta x$ Assume the electric field only depends on the x-position! And that the electric field fills some space.

Maxwell's Equations - Coupling

Maxwell's Equations - Coupling

Maxwell's Equations - Coupling

Maxwell's Equations - Coupling

Maxwell's Equations - Coupling

Faraday's law predicts that as the electric field changes in space, this will induce a changing perpendicular magnetic field at that location.

$$\frac{dE}{dx} = -\frac{dB}{dt}$$

More generally,

$$\frac{\partial E_{y}}{\partial x} = -\frac{\partial B_{z}}{\partial t}$$

Where we have assumed: $\mathbf{E} = E(\mathbf{x}, t)\mathbf{j}$ and $\mathbf{B} = B(\mathbf{x}, t)\mathbf{k}$. This assumption will form *plane waves*, but in the most general case we need not make this assumption.

Maxwell's Equations - Coupling

Maxwell's Equations - Coupling

From Ampere's Law the relation between E and B is

Maxwell's Equations - Coupling

Thus from Maxwell's dynamic equations in vacuum the perpendicular E and B fields couple as

$$\frac{\partial B_z}{\partial x} = -\mu_o \varepsilon_o \frac{\partial E_y}{\partial t}$$
$$\frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}$$

Maxwell's Equations - E&M Waves

Further manipulation

Maxwell's Equations - E&M Waves

Further manipulation working towards the B field

Maxwell's Equations - E&M Waves

$\frac{\partial^2 E_y}{\partial x^2} =$	$\mu_o \varepsilon_o \frac{\partial^2 E_y}{\partial t^2}$
$\frac{\partial^2 B_z}{\partial x^2} =$	$\mu_o \varepsilon_o \frac{\partial^2 B_z}{\partial t^2}$

Wave equations!

1

Maxwell's Equations - E&M Waves

$\frac{\partial^2 E_y}{\partial x^2} = \mu_o \varepsilon_o \frac{\partial^2 E_y}{\partial t^2}$	Wave equations!
Assume, $\vec{E} = E_{\text{max}} \cos(k)$	$(x-\omega t)\hat{j}$ $k=2\pi/\lambda$ and $\omega=2\pi f$
Then, $\frac{\partial^2 E_y}{\partial x^2} = -E_{\max} \cos \theta$	$k(kx-\omega t)k^2$
and $\frac{\partial^2 E_y}{\partial t^2} = -E_{\text{max}}$	$\cos(kx-\omega t)\omega^2$
so, $-E_{\max}\cos(kx-\omega t)$	$k^2 = -\mu_o \varepsilon_o E_{\max} \cos(kx - \omega t)\omega^2$
Or $k^2 = \mu_0 \epsilon_0 \omega^2$	

Maxwell's Equations - E&M Waves

Maxwell's Equations - E&M Waves

$\frac{\partial^2 E_y}{\partial x^2} = \mu_o \varepsilon_o \frac{\partial^2 E_y}{\partial t^2}$ $\frac{\partial^2 B_z}{\partial x^2} = \mu_o \varepsilon_o \frac{\partial^2 B_z}{\partial t^2}$	The Waves (sines and/or cosines) are a solution to this Differential Equation (uniqueness theorem)!
	$\vec{E} = E_{\max} \cos(kx - \omega t)\hat{j}$ and $\vec{B} = B_{\max} \cos(kx - \omega t)\hat{k}$

Plane electromagnetic waves

Maxwell's Equations - E&M Waves

Back to $k^2 = \mu_0 \varepsilon_0 \omega^2$ Recall $k = 2\pi/\lambda$, where λ is the wavelength and $\omega = 2\pi f$, where f is the wave's frequency.

$$\left(\frac{2\pi}{\lambda}\right)^2 = \mu_o \varepsilon_o (2\pi f)^2$$

speed = $\lambda f = \sqrt{\frac{1}{\mu_o \varepsilon_o}} = c$, the speed of light

Where we have assumed the E field in the y-direction, the B field in the z-direction, and the propagation of the wave in the x-direction!

Plane electromagnetic waves

Maxwell's Equations - E&M Waves

Back to Coupling

Recall we coupled the electric and magnetic fields. We then de-coupled them to get the wave eq'n! Go back to Coupling

From Maxwell's dynamic equations in vacuum the perpendicular E and B fields couple as

$$\frac{\partial B_z}{\partial x} = -\mu_o \varepsilon_o \frac{\partial E_y}{\partial t} \qquad \vec{E} = E_{\max} \cos(kx - \omega t) \hat{j}$$
$$\frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t} \qquad \vec{B} = B_{\max} \cos(kx - \omega t) \hat{k}$$

-For our goal now, these eq'ns are redundant. Use only the second one.

Maxwell's Equations - E&M Waves

$\frac{\partial E_{y}}{\partial x} = -\frac{\partial B_{z}}{\partial t}$	$\vec{E} = E_{\max} \cos(kx - \omega t)\hat{j}$
$\frac{\partial E_y}{\partial x} = -E_{\max}k\sin(kx - \omega t)$	$\vec{B} = B_{\max} \cos(kx - \omega t)\hat{k}$
$-\frac{\partial B_z}{\partial t} = -B_{\max}\omega\sin(kx-\omega t)$	

So, $-E_{\max}k\sin(kx-\omega t) = -B_{\max}\omega\sin(kx-\omega t)$

Reduces to, $E_{\max}k = B_{\max}\omega$, $\omega/k = \lambda f = c =$ speed of light

Thus,
$$E_{\text{max}} = cB_{\text{max}}$$
 Coupling!

$$\overline{E}(x,t) = \overline{j}E_{\max}\cos(kx-\alpha t)$$

$$\overline{B}(x,t) = \widehat{k}B_{\max}\cos(kx-\alpha t)$$

$$\overline{B}(x,t) = \widehat{k}B_{\max}\cos(kx-\alpha t)$$
Notes: Waves are in Phase,
but fields oriented at 90° to each other.

$$k=2\pi/\lambda.$$
Speed of wave is c= ω/k (= $f\lambda$)
At all times E=cB.

Plane electromagnetic waves

Maxwell's Equations - E&M Waves

Summary, $\frac{\partial B_{z}}{\partial x} = -\mu_{o}\varepsilon_{o}\frac{\partial E_{y}}{\partial t} \quad and \quad \frac{\partial E_{y}}{\partial x} = -\frac{\partial B_{z}}{\partial t} \quad Coupling \ eq'ns$ $\frac{\partial^{2} E_{y}}{\partial x^{2}} = \mu_{o}\varepsilon_{o}\frac{\partial^{2} E_{y}}{\partial t^{2}} \quad and \quad \frac{\partial^{2} B_{z}}{\partial x^{2}} = \mu_{o}\varepsilon_{o}\frac{\partial^{2} B_{z}}{\partial t^{2}} \quad Wave \ eq'ns$ $\vec{E} = E_{\max} \cos(kx - \omega t)\hat{j}$ $\vec{B} = B_{\max} \cos(kx - \omega t)\hat{k} \quad Wave \ sol'ns, \ propagating \ in \ the \ x - dir.$ $\frac{\omega}{k} = \lambda f = \sqrt{\frac{1}{\mu_{o}\varepsilon_{o}}} = c \quad the \ speed \ of \ light$ $E_{\max} = c \ B_{\max} \quad coupling \ of \ the \ fields$

Example

The earth is ~93 million miles from the sun. How long dose it take light leaving the sun to reach the earth?

Example

The earth is ~93 million miles from the sun. How long dose it take light leaving the sun to reach the earth?

1 mile ~ 8/5 km 93 x 10⁶ miles x (8/5)(1000m/mile) = 1.49 x 10¹¹ m

Speed = distance/time, time = distance/speed

 $1.48 \times 10^{11} \text{ m} / (3 \times 10^8 \text{ m/s}) = 496 \text{ sec} = 8.3 \text{ min}$

Example

Express the electric and magnetic fields of a sinusoidal plane electromagnetic wave having a frequency of 3.00 GHz and traveling in the positive x-direction, if the magnitude of the maximum electric field is 300 V/m.

Example

Express the electric and magnetic fields of a sinusoidal plane electromagnetic wave having a frequency of 3.00 GHz and traveling in the positive x-direction, if the magnitude of the maximum electric field is 300 V/m.

$$E = E_{\max} \cos(kx - \omega t) \hat{j} \qquad E_{\max} = 300 \, \text{%}_{\text{C}}$$
$$\omega = \frac{f}{2\pi} = \frac{3 \times 10^9}{2\pi} \stackrel{\text{l}}{=} 24.77 \times 10^8 \, \frac{\text{rad}}{\text{sec}}$$
$$c = \frac{\omega}{k}, \, k = \frac{\omega}{c} = \frac{4.77 \times 10^8 \, \frac{\text{rad}}{\text{sec}}}{3 \times 10^8 \, \frac{\text{m}}{\text{sec}}} = 1.59 \,/ \text{m}$$
$$\vec{E} = 300 \, \text{\%}_{\text{C}} \cos((1.59 \,/ \text{m})x - (4.77 \times 10^8 \, \frac{\text{rad}}{\text{sec}})) \hat{j}$$

Example

Express the electric and magnetic fields of a sinusoidal plane electromagnetic wave having a frequency of 3.00 GHz and traveling in the positive x-direction, if the magnitude of the maximum electric field is 300 V/m.

$$\vec{B} = B_{\text{max}} \cos(kx - \omega t) \hat{k} \qquad B_{\text{max}} = \frac{E_{\text{max}}}{c} = \frac{300^{\circ}\%}{3 \times 10^8} = 10^{-6} \text{ T}$$
$$\vec{B} = 10^{-6} \text{ T} \cos((1.59 / \text{ m})x - (4.77 \times 10^8 \frac{\text{rad}}{\text{sec}})t) \hat{k}$$

The Electromagnetic Spectrum

Maxwell's Equations - Energy in Waves

Recall, the parallel plate capacitor stored energy in the electric field,

$$U = \frac{1}{2}CV^2$$

And the energy density, $u_E = U/Vol$.

$$u_E = \frac{1}{2}\varepsilon_o E^2$$

The energy is Stored in the E field. Similarly, E&M waves carry energy.

Maxwell's Equations - Energy in Waves

The energy density of an E&M waves do the the E field is

$$u_E = \frac{1}{2} \varepsilon_o E^2$$

From the symmetry in Maxwell's equation we can predict the energy density of the B field.

When $E \rightarrow B$ the $\varepsilon_0 \rightarrow 1/\mu_0$, so

$$u_B = \frac{1}{2} \frac{B^2}{\mu_o}$$

Maxwell's Equations - Energy in Waves

The total energy density is the sum of each.

$$u_{total} = u = u_E + u_B = \frac{1}{2}\varepsilon_o E^2 + \frac{1}{2}\frac{B^2}{\mu_o}$$

Using E=cB and $c^2=1/\epsilon_{\!_O}\,\mu_{\!_O}$

$$u = \varepsilon_o E^2 = \frac{B^2}{\mu_o}$$

Maxwell's Equations - Energy in Waves

Because light is typically of a fast frequency, the average energy density is most commonly used.

$$u_{ave} = \varepsilon_o \left\langle E^2 \right\rangle = \frac{1}{\mu_o} \left\langle B^2 \right\rangle$$

Our fields (E and B) are sinusoidal, thus the averages are: $\langle \cos^2(f(t)) \rangle = 1/2$

$$u_{ave} = \frac{\varepsilon_o E_{\max}^2}{2} = \frac{B_{\max}^2}{2\mu_o}$$

Maxwell's Equations - Energy in Waves

Thus the average energy density of a wave is given by

$$u_{ave} = \frac{\varepsilon_o E_{\max}^2}{2} = \frac{B_{\max}^2}{2\mu_o}$$

Units: Joules/m³

Maxwell's Equations - Energy in Waves

The Intensity of the wave is the amount of energy per unit area per time, i.e. Watts/m². Since the radiation is moving at the speed of light, c, the Intensity, I, is

$$I = cu_{ave}$$

Example:

Solar radiation has an intensity of about 1kW/m^2 on the earth's surface. What are the peak electric and magnetic fields in solar radiation?

Example:

Solar radiation has an intensity of about 1kW/m^2 on the earth's surface. What are the peak electric and magnetic fields in solar radiation?

$$I = cu_{ave} = c \frac{\varepsilon_o E_{max}^2}{2} \rightarrow E_{max} = \sqrt{\frac{2I}{\varepsilon_o c}} \cong 868 \, \frac{W}{c}$$
$$E_{max} = cB_{max} \rightarrow B_{max} = \frac{E_{max}}{c} \cong \frac{868 \, \frac{W}{c}}{3 \times 10^8 \, \frac{W}{s}} \cong 2.89 \times 10^{-6} \,\mathrm{T}$$

Example:

How much electromagnetic energy is contained per cubic meter near the Earth's surface if the intensity of Sun light under clear skies is about 1000 W/m²?

$$U = u \times \text{Vol.}$$

$$I = cu_{ave}$$

$$\rightarrow u_{ave} = \frac{I}{c} \cong \frac{1000 \text{ W/m^2}}{3 \times 10^8 \text{ W/s}} \cong 3.33 \times 10^{-6} \text{ V/m^3} = 3.33 \text{ W/m^3}$$

$$U = u \times \text{Vol.} \cong 3.33 \text{ W/m^3} \times 1 \text{ m}^3 = 3.33 \mu\text{J}$$

Maxwell's Equations - Momentum and Radiation Pressure

The radiation pressure can be expressed as the Intensity by the velocity.

$$I = cu_{ave}, \quad P_{absorption} = \frac{I}{c} = u_{ave}$$

Where this is for an object which completely absorbs the radiation.

If the radiation is perfectly reflected, the pressure will double.

$$P_{reflecting} = 2u_{ave}$$

Maxwell's Equations - Momentum and Radiation Pressure

The momentum of radiation on a surface is the pressure times the surface area times the speed at which the radiation is hitting the surface.

Momentum
$$\rightarrow p_{absorption} = \frac{u_{ave}Area}{c}$$

 $p_{reflection} = \frac{2u_{ave}Area}{c}$

Example

Compare the attractive force of gravity due to the Sun on the Earth with the repulsive force of radiative pressure from Sun light.

Example

Compare the attractive force of gravity due to the Sun on the Earth with the repulsive force of radiative pressure from Sun light.

$$\begin{array}{ll} {\rm G}=6.67 \ {\rm x} \ 10^{-11} \ {\rm N} {\rm \cdot m^2/kg^2} & {\rm P_{absorption}} = \frac{I}{c} \\ {\rm R}_{\odot,\oplus} = 1.5 \ {\rm x} \ 10^{11} \ {\rm m} \\ {\rm M}_{\odot} = 2 \ {\rm x} \ 10^{30} \ {\rm kg} & {\rm F_{Rad}} = {\rm P_{absorption}} \ {\rm Area} = \frac{I}{c} \pi {\rm R_{\oplus}}^2 = 4.29 \times 10^8 \ {\rm N} \\ {\rm M}_{\oplus} = 6 \ {\rm x} \ 10^{24} \ {\rm kg} & {\rm I} = 1000 \ {\rm W/m^2} \\ {\rm R}_{\oplus} = 6.4 \ {\rm x} \ 10^6 \ {\rm m} & {\rm F_{Gravity}} = G \ \frac{{\rm M}_{\oplus} \ {\rm M}_{\circ}}{{\rm R}_{\circ-\oplus}^2} = 3.56 \times 10^{22} \ {\rm N} \end{array}$$

Waves from Antennas

Waves from Antennas

Waves from Antennas

Waves from Antennas

Waves from Antennas

Waves from Antennas

Waves from Antennas

Waves from Antennas

Waves from Antennas

The Inverse-Square Law:

Example:

An observer is 1.8 m from a point light source whose average power P=250 W. Calculate the rms fields in the position of the observer.

Example:

An observer is 1.8 m from a point light source whose average power P= 250 W. Calculate the rms fields in the position of the observer.

$$I = cu_{ave} = c \frac{\varepsilon_o E_{max}}{2}$$

$$I = \frac{P}{4\pi r^2}$$

$$E_{max} = \sqrt{\frac{2P}{c\varepsilon_o 4\pi r^2}} = \sqrt{\frac{P}{2c\varepsilon_o \pi r^2}}$$

$$E_{max} = \sqrt{\frac{250W}{2x3x10^8 \frac{m}{s}x8.85x10^{-12} \frac{C^2}{N \cdot m^2} \pi (1.8m)^2}}$$

$$E_{max} \equiv 68 \frac{V}{m}, \quad E_{RMS} = \frac{E_{max}}{\sqrt{2}} \cong 48.1 \frac{V}{m}, \quad B_{RMS} = \frac{E_{RMS}}{c} = 1.6x10^{-7}T$$