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Chapter 34

The Laws of Electromagnetism

Maxwell’s Equations

Electromagnetic Radiation

Laws of Geometrical Optics

Maxwell’s Equations
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Symmetry, but we have no magnetic monopoles.  

If we had magnetic monopoles, then

where ρ is the monopole.
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Maxwell’s Equations - Dynamic
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Ampere’s Law as Modified
by Maxwell

Again we have symmetry in the E and B field, but we lack
magnetic monopoles.

If we had monopoles Faraday’s Law would become

dt

dI
sdE B

o
loop
closed

Φ−−=•∫ ε
ρ!! Where Iρ = dρ/dt, i.e. the

flow of magnetic
monopoles.

Maxwell’s Equations - Coupling
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Consider Maxwell’s dynamic equations in vacuum
with no free charges or currents.

How would a time changing B field effect an E field in vacuum (1)
and how would a time changing E field effect an B field in vacuum
(2)?
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Maxwell’s Equations - Coupling

Consider an electric field in the y-direction at position x.
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Also consider the electric field at another position, x+∆x

x+∆ x

Assume the electric field only depends on the x-position!
And that the electric field fills some space.
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Maxwell’s Equations - Coupling
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Assume the electric field only depends on the x-position. Apply, 
Faraday’s Law
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Maxwell’s Equations - Coupling
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Maxwell’s Equations - Coupling
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Faraday’s law predicts that as the electric field changes in
space, this will induce a changing perpendicular magnetic
field at that location.

More generally,
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Where we have assumed:
E = E(x, t)j and
B = B(x, t)k.
This assumption will form
plane waves, but in the most
general case we need not make
this assumption.

Maxwell’s Equations - Coupling

Apply Ampere’s Law (in vacuum) in a similar way.  What
will be the relation between E and B?
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Maxwell’s Equations - Coupling

From Ampere’s Law the relation between E and B is
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Maxwell’s Equations - Coupling
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Thus from Maxwell’s dynamic equations in vacuum the
perpendicular E and B fields couple as
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Maxwell’s Equations - E&M Waves

Further manipulation
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The Wave Equation
for the E field.

Maxwell’s Equations - E&M Waves

Further manipulation working towards the B field
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The Wave Equation
for the B field.

Maxwell’s Equations - E&M Waves
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Maxwell’s Equations - E&M Waves
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Or  k2 =µoεoω2

k = 2π/λ and ω = 2π f

Maxwell’s Equations - E&M Waves
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Similarly for the B field!
But, NOTE

Or  k2 =µoεoω2

Maxwell’s Equations - E&M Waves
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are a solution to this Differential
Equation (uniqueness theorem)!
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Plane electromagnetic waves
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Back to  k2 =µoεoω2

Recall k = 2π/λ, where λ is the wavelength
and ω = 2πf, where f is the wave’s frequency.
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Where we have assumed the E field in the y-direction, the B
field in the z-direction, and the propagation of the wave in the
x-direction!

Plane electromagnetic waves
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Back to  Coupling
Recall we coupled the electric and magnetic fields. We
then de-coupled them to get the wave eq’n!
Go back to Coupling
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From Maxwell’s dynamic equations in vacuum the
perpendicular E and B fields couple as
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For our goal now, these eq’ns are redundant.  Use only the second one.

Maxwell’s Equations - E&M Waves
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So, -Emaxksin(kx-ωt) = -Bmax ωsin(kx-ωt)

Reduces to, Emaxk = Bmax ω, ω/k = λf = c = speed of light

Thus, Emax= cBmax Coupling!
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  k=2π/λ.2π/λ.2π/λ.2π/λ.
  Speed of wave is c=ωωωω/k (= fλλλλ)
  
  At all times E=cB.1 3 100 0

8/ /

)cos(ˆ),(

)cos(ˆ),(

max

max

tkxBktxB

tkxEjtxE

ω

ω

−=

−=
!

!



6

Maxwell’s Equations - E&M Waves
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Example

The earth is ~93 million miles from the sun.  How long dose it
take light leaving the sun to reach the earth?

Example

The earth is ~93 million miles from the sun.  How long dose it
take light leaving the sun to reach the earth?

1 mile ~ 8/5 km

93 x 106 miles x (8/5)(1000m/mile) = 1.49 x 1011 m 

Speed = distance/time, time = distance/speed 

1.48x1011 m / (3x108 m/s) = 496 sec = 8.3 min 

Example

Express the electric and magnetic fields of a sinusoidal plane
electromagnetic wave having a frequency of 3.00 GHz and
traveling in the positive x-direction, if the magnitude of the
maximum electric field is 300 V/m.

Example

Express the electric and magnetic fields of a sinusoidal plane
electromagnetic wave having a frequency of 3.00 GHz and
traveling in the positive x-direction, if the magnitude of the
maximum electric field is 300 V/m.
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Example

Express the electric and magnetic fields of a sinusoidal plane
electromagnetic wave having a frequency of 3.00 GHz and
traveling in the positive x-direction, if the magnitude of the
maximum electric field is 300 V/m.
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The Electromagnetic Spectrum

Radio waves

µµµµ-wave

infra
-red γγγγ-rays

x-rays

ultra
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Maxwell’s Equations - Energy in Waves

Recall, the parallel plate capacitor stored energy in the electric
field,
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And the energy density, uE = U/Vol.
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The energy is Stored in the E field.  
Similarly, E&M waves carry energy.

Maxwell’s Equations - Energy in Waves

The energy density of an E&M waves do the the E field is
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From the symmetry in Maxwell’s equation we can predict
the energy density of the B field.
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Maxwell’s Equations - Energy in Waves

The total energy density is the sum of each.  
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Maxwell’s Equations - Energy in Waves

Because light is typically of a fast frequency, the average energy
density is most commonly used.
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Our fields (E and B) are sinusoidal, thus the averages are:
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Maxwell’s Equations - Energy in Waves

Thus the average energy density of a wave is given by
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Maxwell’s Equations - Energy in Waves

The Intensity of the wave is the amount of energy per unit area
per time, i.e. Watts/m2.  Since the radiation is moving at the
speed of light, c, the Intensity, I, is

avecuI =

Example:
Solar radiation has an intensity of about 1kW/m2 on
the earth’s surface.  What are the peak electric and
magnetic fields in solar radiation?

Example:
Solar radiation has an intensity of about 1kW/m2 on
the earth’s surface.  What are the peak electric and
magnetic fields in solar radiation?
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Example:
How much electromagnetic energy is contained per
cubic meter near the Earth’s surface if the intensity of
Sun light under clear skies is about 1000 W/m2?
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Maxwell’s Equations - Momentum and
Radiation Pressure

The radiation pressure can be expressed as the Intensity by the
velocity.
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Where this is for an object which completely absorbs the
radiation.
If the radiation is perfectly reflected, the pressure will double.
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Maxwell’s Equations - Momentum and
Radiation Pressure

The momentum of radiation on a surface is the pressure times
the surface area times the speed at which the radiation is hitting
the surface.
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Example
Compare the attractive force of gravity due to the Sun on the
Earth with the repulsive force of radiative pressure from Sun
light.

G = 6.67 x 10-11 N-m2/kg2  
R!-⊕  = 1.5 x 1011 m 
M! = 2 x 1030 kg
M⊕  = 6 x 1024 kg
I = 1000 W/m2  
R⊕  = 6.4 x 106 m

Example
Compare the attractive force of gravity due to the Sun on the
Earth with the repulsive force of radiative pressure from Sun
light.
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Waves from Antennas
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∆
∆=

oot

x

µε

ac volt.
∝ sin(ωt)
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Waves from Antennas

ac volt.

Ant.

-

+

E
!

Many ∆t’s
c

1
v ==

∆
∆=

oot

x

µε

ac volt.
∝ sin(ωt)

Waves from Antennas

ac volt.

Ant.

-

+

E
!

Many ∆t’s
c

1
v ==

∆
∆=

oot

x

µε

t)sin(ω∝

ac volt.
∝ sin(ωt)

The Inverse-Square Law:

Source
r

A point source of light, or any radiation, spreads 
out in all directions:

Pt. Source

Power, P, flowing
through sphere
is same for any
radius.

Area r∝ 2

24 r

P
I

π
=

2

1

r
I ∝

Example:
An observer is 1.8 m from a  point light source whose
average  power P= 250 W.  Calculate the rms fields in
the position of the  observer.

Example:
An observer is 1.8 m from a  point light source whose
average  power P= 250 W.  Calculate the rms fields in
the position of the  observer.

Tx
c

E
B

m

VE
E

m

V
E

m
mN

C
xx

s
m

xx

W
E

rc

P

rc

P
E

r

P
I

E
ccuI

RMS
RMSRMS

oo

o
ave

7max
max

2
2

2
128

max

22max

2

2
max

106.1,1.48
2

,68

)8.1(1085.81032

250

24

2

4

2

−

−

==≅=≅

⋅

=

==

=

==

π

πεπε

π

ε


