Chapter 34

\

The Laws of Electromagnetism

Maxwell’s Equations
Electromagnetic Radiation
Laws of Geometrical Optics

Maxwell’s Equations - Static

E e dA = dincose Gauss’s Law for Electricity
closed &
surface

ff B+ dA
closed
surface

0 Gauss’s Law for Magnetism

Symmetry, but we have no magnetic monopoles.

If we had magnetic monopoles, then ﬂS B e dA = 1y Pinciose

closed

where p is the monopole. surface

But, we have not detected any magnetic monopoles, so BedA=0

closed
surface

Maxwell’s Equations - Coupling

Consider Maxwell’s dynamic equations in vacuum
with no free charges or currents.

. __do, R AR
de ds = i . ®g=[BedA 1)
loop
o do, CE AR
Beds=pu,c, o ,CDE—J'E dA (2)

How would a time changing B field effect an E field in vacuum (1)
and how would a time changing E field effect an B field in vacuum
(2)?

Maxwell’s Equations

E o dA = Yincose Gauss’s Law for Electricity
cldsed &,
surface
ff BedA=0 Gauss’s Law for Magnetism
closed
surface
jiE e ds = - do, = EMF Faraday’s Law
dt

< dd ;. Ampere’ i
g = pere’s Law as Modified
-fB «ds = H, I inclosed + Ho€, dt by Maxwell

Maxwell’s Equations - Dynamic

_do,
dt

e dsS = Faraday’s Law

—en
m

cldsed
loop

) do , -
Beds = | £ E Ampere’s Law as Modified
IJ o "inclosed I’l oo dt by Maxwell

cldsed
loop

Again we have symmetry in the E and B field, but we lack
magnetic monopoles.

If we had monopoles Faraday’s Law would become

Eods=- I, _d®y  wherel,=dpofdt ie. the

cldsed &, dt flow of magnetic
loop monopoles.

Maxwell’s Equations - Coupling




Maxwell’s Equations - Coupling Maxwell’s Equations - Coupling

Consider an electric field in the y-direction at position x.

Assume the electric field only depends on the x-position. Apply,
y y Faraday’s Law
Eeds=-9% o, = [Bedl
cldsed dt
loop
E E+AE E E+AE
: : X : : X
X X+AX X X+AX
Z  Also consider the electric field at another position, x+A4x z

Assume the electric field only depends on the x-position!
And that the electric field fills some space.

Maxwell’s Equations - Coupling Maxwell’s Equations - Coupling

Assume the electric field only depends on the x-position. Apply, Assume the electric field only depends on the x-position. Apply,

y Faraday’s Law y Faraday’s Law
= do = e = do =
A Eeds=- B d,=(B-dl A Eeds=- B ., =(B-dl
+ cldsed dt : J- + cldsed dt : J-
h loop h loop
E E+AE E E+AE
| | X | | X
X X+AX X X+AX
From From and
jsE-dgz(E+AE)h+€cos(90)Ax—Eh—Ecos(go)Ax E « ds = AEh do, =g(B Axh) = Axh dB ..
z s z e dtdt ™ it

= (E+AE)h+0-Eh -0 = AEh

Maxwell’s Equations - Coupling Maxwell’s Equations - Coupling

Assume the electric field only depends on the x-position. Apply,

Assume the electric field only depends on the x-position. Apply,

y Faraday’s Law y Faraday’s Law
Therem_ust i A E.d§=_dq’5, ¢B=I§.dr Therem_ust A A .fE.d§=—dq>B, ¢B=I§.dr
be a B field oldhed dt be a B field oldhed dt
inside the | | | insidethe | ' | ~ | |
loop! loop!
. AEh = —Axh $Bae . AEh = —Axh BB
E E+AE dt E E+AE
Ba\/e
: ‘ X : : X
X X+AX X X+AX
From and From and
m;é-lﬁ:AEh YT oy = o B 7 €. d5 = aEN tow B

= Tr(BaveAxh) = Axh



Maxwell’s Equations - Coupling

Assume the electric field only depends on the x-position. Apply,

y Faraday’s Law
There must A E-d§=_dq’5 ® :Iéodf
beaBfield| | 4 i a7
insidethe | P |~ ) |
1
loop! AEh = —Axh dB ae
E E+AE
Ba\/e ' f X
X X+AX
AE ., _ _ dB, AE B .
Ax - Td ax dt

Maxwell’s Equations - Coupling

Faraday’s law predicts that as the electric field changes in
space, this will induce a changing perpendicular magnetic
field at that location.

dE _ dB
dx dt
More generally,

Where we have assumed:
oE, 0B, E = E(x, t)j and
6_=_6_t B = B(x, t)k.

X This assumption will form
plane waves, but in the most
general case we need not make
this assumption.

Maxwell’s Equations - Coupling

From Ampere’s Law the relation between E and B is

0B, e OE,
y ox ot
E.e » E(X) for Ax -0
A

X X+AX - X +dx

,,,,,,,,,, X
/ / n
z B 7B+AB /- B+dB fé o ds = ¢, d:;E

cldsed
loop

Maxwell’s Equations - Coupling

Assume the electric field only depends on the x-position. Apply,

y Faraday’s Law
There must i A E-d§:—d¢5, ¢B=jé-df
be a B field ied dt
insidethe | ' ]~ | |
loop! dB
’ AEh = -Axh —2=
E E+dE dt
Ba\/e | | X
X X+AX
AE OB, AE __dB
Ax dat ' Ax dt
z as Ax - 0, then B,, - B(x) and ﬁﬁ L
AX dx
Thus de = - d8 from Faraday 's Law !
dx dt

Maxwell’s Equations - Coupling

Apply Ampere’s Law (in vacuum) in a similar way. What
will be the relation between E and B?

Maxwell’s Equations - Coupling

Thus from Maxwell’s dynamic equations in vacuum the
perpendicular E and B fields couple as

oB, ___OE,
X Ho€o W
OE, _ 9B,

ox ot



Maxwell’s Equations - E&M Waves

Maxwell’s Equations - E&M Waves

Further manipulation

6BZ=_u£ %, 0 9?8, e 9°E,
ox °° ot ot ot ox o o2
OE, B, o O, _ 9%B,
ax At x| oxt  oxat
9°B, _ 0°B,
ax ot ot ox

PE, O,

o M \

and S0

The Wave Equation
for the E field.

Maxwell’s Equations - E&M Waves

Further manipulation working towards the B field

9B, _ 0E, 9%B, _ 0°E,
Y S VL v
0E, 0B, O°E,  0°B,
Tox ot otax ot
d O'F, =ﬁ )
ox ot Ot 0x
9°B, 9°B,

ac e \

The Wave Equation
for the B field.

Maxwell’s Equations - E&M Waves

0°E, _ 0’E, )
pYe —HOSOF Wave equations!
3°B, _ 9°B,

e Het o

Maxwell’s Equations - E&M Waves

2 2 Similarly for the B field!
9 BZZ = l,E, LE’Z But, NOTE
ox ot

Assumg B=B, cos(kx—at)lz, l?(unit vector) # k(wave no.)

2
Then, 9 BZZ =B, COs(kx —at)k?
0X
2
and aathz =-B,,,, cos(kx—at)w’

50, =B, COS(KX —at)k® = —p1,€, B, COS(KX — )0’

_/ Or k2 =p,g,07

0°E, 0%E,
= uogo T2
ox’ at?
Assume, E =E,_, cos(kx—ct)] k=274 and w=2nmf
2

Wave equations!

Then, —X =-E,, cos(kx—at)k’

ox?
02
and 5 Y = —E,, cos(kx —at)w’

2

50, —E,,, COS(kX —at)k® = =4, &, E 1 COS(KX — k)

_/ Or K2 = g,07

Maxwell’s Equations - E&M Waves

0°E, _  0°E,
7~ Hoéo 73 The Waves (sines and/or cosines)
0x ot : g -
) ) are a solution to this Differential
9°B, =L, 9°B, Equation (uniqueness theorem)!
ox’ R

E=E,, cos(kx—at) ]
and
B =B,,, coskx—at)k



Plane electromagnetic waves

E(xt) = JE,,,coskx—cd)

B(x,t) =KkB, .coskx—cd)

SN SY

Plane electromagnetic waves

E(xt) = JE,.,.coskx—cd)

-
NN
\

Y.
Notes: Waves are in Phase, {
but fields oriented at 90° to each other.

Y

k=2TU\. X

Speed of wave is c=aYk (= fA)

c=1/./guo =3x108m/s

Maxwell’s Equations - E&M Waves
OE, __9B, E=E,,, cos(kx—ct)]
[)4 ot
o, ) - .
ox - Emeksin(x-at) B =B, cos(kx—at)k
oB

—=% = -B,wsin(kx —at)
ot

S0, -Eaksin(kx-at) = -B,,, asin(kx-at)

Reduces to, E .,k = By 0, awlk = Af = ¢ = speed of light

ThUS, Emax: CBmax Coupllng'

Maxwell’s Equations - E&M Waves

Back to k2 =pi,g,0%
Recall k = 217\, where A is the wavelength
and w = 211, where f is the wave’s frequency.

T | _ 2
él%g—uoao(zm

speed = Af = ! =c, the speed of light!
IJDEO

Where we have assumed the E field in the y-direction, the B
field in the z-direction, and the propagation of the wave in the
x-direction!

Maxwell’s Equations - E&M Waves

Back to Coupling

Recall we coupled the electric and magnetic fields. We
then de-coupled them to get the wave eq’n!

Go back to Coupling

From Maxwell’s dynamic equations in vacuum the
perpendicular E and B fields couple as

9B, 9E . .
o - Hefo WY E =E,,, cos(kx—at) ]
%, __98
ox ot B =B, cos(kx—at)k

For our goal now, these eq’ns are redundant. Use only the second one.

Plane electromagnetic waves

Ey E(X’ t) = jErnaxCOSkX_d)

{1

SO
\

Notes: Waves are in Phase, {

but fields oriented at 90° to each other. L
k=2TU/A. X
Speed of wave is c=w/k (= fA)

a I - - ~ " r\8 1
At all times E=cB.



Maxwell’s Equations - E&M Waves Example

Summary, The earth is ~93 million miles from the sun. How long dose it
9B, __ . 0E, - oE, _ 0B, Counling eq'ns take light leaving the sun to reach the earth?
o HoEo at ax o pling eq
0’E, 0’E, a’B 8’B
= UE and L= e, —= Waveeq'ns
EYe Ho&o o EYa Koo o q

E =E,,, cos(kx—at)

B= B, cos(kx—ax)lz Wave sol'ns, propagating in the x —dir.

9=/\f =L =c the speed of light
k Vuosu

E.x=CB coupling of the fields

max

Example Example

The earth is ~93 million miles from the sun. How long dose it
take light leaving the sun to reach the earth?

Express the electric and magnetic fields of a sinusoidal plane
electromagnetic wave having a frequency of 3.00 GHz and
traveling in the positive x-direction, if the magnitude of the

1 mile ~ 8/5 km maximum electric field is 300 V/m.

93 x 108 miles x (8/5)(1000m/mile) = 1.49 x 10t m
Speed = distance/time, time = distance/speed

1.48x10' m / (3x108 m/s) = 496 sec = 8.3 min

Example Example

Express the electric and magnetic fields of a sinusoidal plane
electromagnetic wave having a frequency of 3.00 GHz and
traveling in the positive x-direction, if the magnitude of the
maximum electric field is 300 V/m.

E = Emax COS(kX _O'I) ] Emax =300 %

° 1
=1 230 g 770
2 2n
8 rad
C:Q’ k :Q—% =1.59/m

k ¢ 3x10°m

sec

E =300 cos((L.59/ m)x - (4.77x10° 2 })

Express the electric and magnetic fields of a sinusoidal plane

electromagnetic wave having a frequency of 3.00 GHz and

traveling in the positive x-direction, if the magnitude of the

maximum electric field is 300 V/m.

B=B,,coskx-at)k B —Era _ 300% =10°T
mex c 3x10° m

B =10 Tcos((1.59/ m)x - (4.77x10° 2 hyk



The Electromagnetic Spectrum

A AT

Radio waves :
e s el o e
&b

H-wave

Ml 631 GE SM W 2N

Maxwell’s Equations - Energy in Waves

Maxwell’s Equations - Energy in Waves

The energy density of an E&M waves do the the E field is

1
ug =—¢,E?
2
From the symmetry in Maxwell’s equation we can predict
the energy density of the B field.
When E - Btheg, - 1/, so

1B’

m

Ug

Maxwell’s Equations - Energy in Waves

Recall, the parallel plate capacitor stored energy in the electric
field,

U= 1CV 2
2
And the energy density, ug = U/Vol.

1
u. =—¢,E*
2
The energy is Stored in the E field.
Similarly, E&M waves carry energy.

Maxwell’s Equations - Energy in Waves

Because light is typically of a fast frequency, the average energy

density is most commonly used.

b =)= L (8

Our fields (E and B) are sinusoidal, thus the averages are:
<cos?(f(t))> = 1/2

2 2
u — goEmax = Bmax

ave 2 2 uo

The total energy density is the sum of each.

2
=U=Ug +Ug :%£0E2+%E
H,

u

total

Using E = cB and c? = 1/g, |,

u=g EZ:B—Z
A

Maxwell’s Equations - Energy in Waves

Thus the average energy density of a wave is given by

2 2
— go Emax - Bmax

u ave
2 24,

Units: Joules/m3



Maxwell’s Equations - Energy in Waves

The Intensity of the wave is the amount of energy per unit area
per time, i.e. Watts/m2. Since the radiation is moving at the
speed of light, c, the Intensity, 1, is

Il =cu

ave

Example:
Solar radiation has an intensity of about 1kW/m? on

the earth’s surface. What are the peak electric and
magnetic fields in solar radiation?

l=cu, =cBEm £ = |2l mgegy
2 £C
E,. . 868%

E =cB B =—=[]

o . . ————[2.89x10°T
C 3x10°

Maxwell’s Equations - Momentum and
Radiation Pressure

The radiation pressure can be expressed as the Intensity by the
velocity.

|
I = CU.e, Pabsorption = E =Uge
Where this is for an object which completely absorbs the

radiation.
If the radiation is perfectly reflected, the pressure will double.

P

reflecting

=2u

ave

Example:

Solar radiation has an intensity of about 1kW/m? on
the earth’s surface. What are the peak electric and
magnetic fields in solar radiation?

Example:
How much electromagnetic energy is contained per

cubic meter near the Earth’s surface if the intensity of
Sun light under clear skies is about 1000 W/m?2?

U =uxVol.
I =cu,,

oy, = 02990%: 333410+ 4, =3.334,
c 3x10°%

U =uxVol. 03.33%/, x1m® =3.33

Maxwell’s Equations - Momentum and
Radiation Pressure

The momentum of radiation on a surface is the pressure times
the surface area times the speed at which the radiation is hitting
the surface.

u,.Area

Momentum — pabsorption = avec
_ 2u,.Area

preflection - c



Example Example

Compare the attractive force of gravity due to the Sun on the Compare the attractive force of gravity due to the Sun on the
Earth with the repulsive force of radiative pressure from Sun Earth with the repulsive force of radiative pressure from Sun
light. light.

G =6.67x 10 N-m2/kg?  Pasorptin ==
Ro.5=15x10%m

M, =2x 10%kg Frad = Pussorpiion ATER = lnRDZ =4.29x10°N
M, = 6 x 10% kg ¢
I = 1000 W/m? oy =G oMo _ 3 564102 N
Ry =6.4x 106 m Ro-o
Waves from Antennas Waves from Antennas

+

ac volt. ac volt. E
Osin(wt, Osin(wt,

Waves from Antennas Waves from Antennas
At later + Another +
+ At later

m

ac volt. ac volt l E
Osin(wt, Osin(wt,



Waves from Antennas Waves from Antennas

St 1
Third At Forth At N At [e.1t,

ac voIt.@}: *l l E ac voIt.@}: T#l } E
Osin(ot] Osin(ot]

— 4Ax

Waves from Antennas Waves from Antennas

v-g- L =c v-AX- L =c
Fifth At B TNt e, Sixth At At

acyolt.@}:[ t=] l g acyolt.@}: [ t=] } g
Osin(t] Osin(ot]

Waves from Antennas Waves from Antennas

b _ - &1
Seventh At - VN e Eighth At - U e

acvolt.@}:[ [ T#l l E acvolt.@}:T [ [ T#l } E
Osin(t] Osin(ot]

———— 1A




Waves from Antennas

1
Many At's - Vi NPT h
ac volt/ t t t =

The Inverse-Square Law:

A point source of light, or any radiation, spreads

out in all directions: Poweer, P, flowing
Pt. Source - ~ through sphere
. is same for any
radius.
P
| = >
4mr
r
Area O r2
1
1o
Example:

An observer is 1.8 m from a point light source whose
average power P=250 W. Calculate the rms fields in
the position of the observer.

2

I =CU,, =075°Em“

2
| = P
amr’®
e - [2p _ [P
e ce,4mr? 2ce,mr?
_ 250W
Emax - m Cz
\/2)(3)(103—x8.85x10'lz > (1.8m)?

S N n

E

v . v E B
Epw 068~ Eqys = =7 048.1 -, Bry =2 =16x10 T

V2

Waves from Antennas

b1
Many At's - ot NPT h
ac volt/ t t t =
Osin(ax)

Example:

An observer is 1.8 m from a point light source whose
average power P=250 W. Calculate the rms fields in
the position of the observer.



