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Sources of Magnetic Fields

• We saw that magnetic fields from permanent
magnets exert forces on moving charges.

• It turns out that something reciprocal happens:
moving charges give rise to magnetic fields
(which can then exert a force on other moving
charges).

• We’ll start with currents in wires, the easiest
case; but it turns out that the magnetism of
permanent magnets also comes from moving
charges (the electrons in the atoms).

Biot-Savart Law

• The mathematical description of the magnetic
field B due to a current is called the Biot-Savart
law.   It gives B at some position.

• A current I is moving along a path l. We need to
add up the bits of magnetic field dB arising from
each infinitesimal length dl.

r

d l θ
I dB

I dl r

r

!
!

∝
× "

2

Add up all the bits!Id r
!
# × "

It turns out that µ0 and εο are strongly related!

The constant  µ0  =  4π x 10-7 T m/A 
is called the permeability of free space.
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Example: Magnetic field from a long wire

Consider a long straight wire carrying a current I.
We want to find the magnetic field B at a point a
distance R from the wire.
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Example: Magnetic field from a long wire

Consider a long straight wire carrying a current I.
We want to find the magnetic field B at a point a
distance R from the wire.

Break the wire into bits  dl.
To do that, choose coordinates:
let the wire be along the x axis,
and consider the little bit dx at a
position x.

The vector r is from this bit to
the observation point. 
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Example: Magnetic field from a long wire

dx

I

R

x

x

0

r
Direction: into page

dB = µ 0I

4π
dx sinθ

r2

∴ B = dB =∫
µ 0I

4π
sinθdx

r 2x = −∞

x = +∞

∫

+

θ

dB
I d

r

!
!

=
×µ

π
0

24

l "r

Example: Magnetic field from a long wire
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See URL http://www.rwc.uc.edu/koehler/biophys/movs/bfield.mov

Finite Wire

Magnetic field from a circular current loop
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Only z component
is nonzero over the 
whole loop.
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from the loop, z>>R

Magnetic field from a circular current loop
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In  the plane of the loop:
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Example:  Find the Magnetic Field, B, at the point P.
The very long wire show carries a current I = 5 A and
makes a 90o turn of radius r = 5 cm



Example:  Find the Magnetic Field, B, at the point P.
The very long wire show carries a current I = 5 A and
makes a 90o turn of radius r = 5 cm

Break into pieces of wire and sum up the B field from each piece, i.e. superposition.

BI BII

BIII

BI is half of an infinite wire
 BI = (1/2)µoI/(2πr) = µoI/(4πr)

BII is a quarter  of a loop of wire at the center (z=0)!
 BII = (1/4)µoI/(2r) = µoI/(8r)

BIII is half of another infinite wire
 BIII = (1/2)µoI/(2πr) = µoI/(4πr)

BI, BII, and BIII are all parallel and into the board!

BTotal = BI + BII + BIII = µoI/(4πr) + µoI/(8r) + µoI/(4πr) 

BTotal = µoI/(2πr) + µoI/(8r) = µoI/((2π+8)r) = 8.8 x 10-6T = 8.8 µT

The magnetic dipole moment of the
loop is defined as µ = IA =IπR2.

The direction is given by another
right hand rule: with fingers in the
direction of the current flow, the
thumb points along µµµµ.

Magnetic field in terms of dipole moment
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µ
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In terms of µ, the magnetic field on axis (far from
the loop)  is therefore  

This also works for a loop with N turns. Far from
the loop the same expression is true with the
dipole moment given by µ=NIA = IπΝR2

B =
µ0 µ
2πz3

Magnetic field in terms of dipole moment Dipole Equations

Electric Dipole

  τ = p  x  E

 U  =  - p . E

Eax  =  (2πε0 )
-1  p/z 3

Ebis  = (4πε0 )
-1  p/x3

Magnetic Dipole

 τ = µµµµ  x  B

U  =  - µµµµ . B

Bax  = ( µ0/2π)  µ/z3

Bbis  = (µ0/4π)  µ/x3

Ampere’s Law

The fundamental law of electrostatics is Coulomb’s
law: given the sources, sum (or integrate) to get E.

From Coulomb’s law one can derive Gauss’s law

This is always true, but usually useless. (It is
useful in cases of high symmetry.)

Ampere’s law is to the Biot-Savart law exactly what
Gauss’s law is to Coulomb’s law.
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Ampere’s Law

The fundamental law of magnetostatics is the law of
Biot-Savart: given the sources, integrate to get B.

From this one can derive Ampere’s law:

This is always true, but usually useless. (It is
useful in cases of high symmetry.)

line integral around some closed curve

I is the sum of all the currents passing
through the area enclosed by the curve.
(Sign given by a right-hand rule)
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blue - into figure ( -)
 red  -  out of figure (+)

Draw an “Amperian
loop” around the
sources of current.
The line integral of the
tangential component
of B around this loop is
equal to µoI:

HINT: TAKE ADVANTAGE OF SYMMETRY!!!!

Ampere’s Law - a line integral
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 red  -  out of figure (+)

Ampere’s Law - a line integral
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Ampere’s Law - a line integral
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Try Ampere’s Law on a wire

i

What is magnetic field
at point P ?

Try Ampere’s Law on a wire

i

B

What is magnetic field
at point P ?  Draw Amperian
loop through P around current
source and integrate B  . dl
around loop P
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Then  B . dl  = Bdl
Integral is B(2πr)

Force between two current-carrying wires

I1

I2

B2

B1

Current 1 produces a magnetic
field B1 =µµµµ0I/ (2π π π π d) at the position
of wire 2.

d



Force between two current-carrying wires

I1

I2

B2

B1

Current 1 produces a magnetic
field B1 =µµµµ0I/ (2π π π π d) at the position
of wire 2.

d

Here this gives the force on a length L of wire 2 to be:

F2 = I2 LB1 =
µ0 I1I2 L

2πd
Direction: towards 1, if the currents are in the same direction.
What is the force on wire 1?
What happens if one current is reversed?

This produces a force on current 2:
     F2 = I2L x B1

F2

A Solenoid
.. is a closely wound coil having n turns per unit length.

current flows
out of plane

current flows
into plane

What direction is the magnetic field?

A Solenoid

... a closely wound coil having N turns per unit
length.

current flows
out of plane

current flows
into plane

What direction is the magnetic field?

A Solenoid
Consider longer and longer solenoids.

Fields get weaker and weaker outside.

Apply Ampere’s Law to the loop shown.
Is there a net enclosed current?
In what direction does the field point?
What is the magnetic field inside the solenoid?

current flows
out of plane

current flows
into plane

Apply Ampere’s Law to the loop shown.
Is there a net enclosed current?
In what direction does the field point?
What is the magnetic field inside the solenoid?

current flows
out of plane

current flows
into plane

InBNILB 00 )()( µµ =⇒=



Solenoids and Toroids

• Solenoids       B  = µoIn     n = # of turns/m
of length of
the solenoid

     This is valid inside, not too near the ends.

• A toroid is a solenoid bent in a circle. A
similar calculation gives B = µoIN/2πr,
where in this case N is the total number of
turns.

Gauss’s Law for Magnetism

For electric charges
Gauss’s Law is 

- because there are single electric charges.  On
the other hand, we have never detected a single
magnetic charge, only dipoles.  Since there are
no magnetic monopoles there is no place for
magnetic field lines to begin or end.  Thus,
Gauss’s Law for magnetic charges must be
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Present Status

 We have now 2 1/2 of Maxwell’s 4
fundamental laws of electromagnetism.
They are:
Gauss’s law for electric charges

Gauss’s law for magnetic charges

Ampere’s law (it is still incomplete as it only
applies to steady currents in its present form.
Therefore, “half” of a law.)

....lets take a look at  charge  flowing into a capacitor....

E

B ds I∫ • = µ0

…in Ampere’s Law 
...we assumed constant current...

IldB 0µ=•∫
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B

....lets take a look at  charge  flowing into a capacitor....

B E

E
.. if the  loop  encloses one 
plate of the capacitor..

B

Side view:

(Surface is now
like a bag:)

…in Ampere’s Law 
...we assumed constant current...

IldB 0µ=•∫
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...Maxwell solved this problem by
realizing....

B E..inside the capacitor  there is 
an induced magnetic field...

inside capacitor ..changing E!  



...Maxwell solved this problem by
realizing....

B E

  X
x   x   x   x

X  x  x  x   x  

X  x 

A changing
electric field
 induces a
magnetic field

..inside the capacitor  there is 
an induced magnetic field...

inside capacitor ..changing E!  

where Id is called the
          ...displacement current

Therefore  Maxwell’s revision 
of Ampere’s Law is now.....
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Derivation of Displacement Current
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Now, the electric flux is given by EA, so:       ,
where this current , not being associated with charges, is 
called the “Displacement current”, Id.

Hence:
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A P.P. CAP is constructed with circular plate of cross
sectional area 10.0 cm2 and separated by 1.0 mm.  The cap
is in a series circuit which has 0.1 A of current flowing in
it.   Find the displacement current in the CAP.

I

C

A P.P. CAP is constructed with circular plate of cross
sectional area 10.0 cm2 and separated by 1.0 mm.  The cap
is in a series circuit which has 0.1 A of current flowing in
it.   Find the displacement current in the CAP.
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