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Gauss’s Law

Chapter 24

Gauss’s law and electric flux

Gauss’s law is based on the concept of flux:

Here the flux is
    ΦΦΦΦ = E A

You can think of the flux through some surface as a measure of
the number of field lines which pass through that surface.

Flux depends on the strength of E, on the surface area, and on
the relative orientation of the field and surface.

Normal to surface,
magnitude A

area A

E
A

Electric flux

The flux also depends on orientation:
area A

θarea
A cos θ

The number of field lines through the tilted surface    equals the
number through its projection   .  Hence the flux through the tilted
surface is simply given by the flux through its projection: E(Acosθ).

Here flux   ΦΦΦΦ = E A cos θθθθ  =  E   A

Angle θθθθ

(top of area A is tilted forward)
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+

+

θ
dA

E

Electric flux

Closed 
surface

Field lines

But what if the electric field is not constant?  What if it varies
(possibly in both magnitude and direction) as a function of r ?

This possibility is sketched here for the case of a closed surface.

How do you calculate
the flux?  Break the
surface into bits dA .

Electric flux

+

+
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θ
dA

E

dA is a small area
element, like ∆A.
Flux through  dA is
 dΦ = E dA cos θ
dΦ = E  • dA

But what if the electric field is not constant?  What if it varies
(possibly in both magnitude and direction) as a function of r ?

This possibility is sketched here for the case of a closed surface.

So how do we find
the TOTAL Flux?

Electric flux
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θ
dA

E

We have to sum all the
dΦΦΦΦ’s over the entire

surface: Φ =Φ =Φ =Φ = ΣΣΣΣ dΦΦΦΦ
For accuracy the dA’s
and thus dΦΦΦΦ’s must be
very small.

But what if the electric field is not constant?  What if it varies
(possibly in both magnitude and direction) as a function of r ?

This possibility is sketched here for the case of a closed surface.
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Electric flux
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But what if the electric field is not constant?  What if it varies
(possibly in both magnitude and direction) as a function of r ?

This possibility is sketched here for the case of a closed surface.

The loop means the integral is over a closed surface.

Gauss’s Law

Electric flux  through any closed surface   
         =  (charge inside) / εεεε0

Electric flux  through any closed surface   
         =  (charge inside) / εεεε0

0ε

∑
∫∫ =⋅=Φ=Φ inside

q
dAEd

Hence, Gauss’ Law states:

This is always true.  It’s sometimes useless,
but often a very easy way to find the electric
field (for highly symmetric cases).

Consider a positive point charge q.  Define a Gaussian
surface (i.e. a closed surface) which is a sphere of radius r.
By symmetry, the lines of E must be radially outwards, with
magnitude depending only on r.

E

q

→→→→ Coulomb’s Law!

 Apply Gauss’ s law to a point charge

∫∫∫∫∫∫ ==⋅= dAEEdAd
0

AE
!!

ε
q

24 = area totaldA  using r∫∫ = π
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Symmetry

• Apply Gauss’s Law to a point charge and
what do you get?  Answer: Coulomb’s Law!

• We used the fact that a point charge in
space is spherically symmetric.

• Gauss’s Law is always true, but is only
useful for problems with usable symmetry.

Is Gauss’s Law more fundamental
than Coulomb’s Law?

• Maybe?  Here we derived Coulomb’s law for a point
charge from Gauss’s law.

• One can instead derive Gauss’s law for a general (even
very nasty) charge distribution from Coulomb’s law.  The
two laws are equivalent.

• Gauss’s law gives us an easy way to solve very symmetric
problems in electrostatics.

• Gauss’s law also gives us great insight into the electric
fields in and on conductors and within voids inside metals.

• Gauss’s law has applications in electricity, magnetism, and
even gravity.  Mathematically, it applies fundamentally to
vector fields and their potentials.  Mathematically, Gauss’s
law is very fundamental.

0

enclosedQ
=d

ε
AE
!!

∫ ⋅=Φ

Gauss’s Law

The total flux within
 a closed surface

is proportional to
the enclosed charge.

Gauss’s Law is always true, but is only useful for
problems with usable symmetry.
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Symmetry and the Electric Field

Can we figure out how the field varies with 
distance from the field lines and the symmetry?

Symmetry and the Electric Field

Can we figure out how the field varies with 
distance from the field lines and the symmetry?

Look at a point charge:
 - How do its field lines look?

q

Field lines point out (or in) radially in all directions (3D)

This is  a 2D picture.
Next we’ll try to get a
picture of a 3D piece.

Symmetry and the Electric Field

Can we figure out how the field varies with 
distance from the field lines and the symmetry?

Look at a point charge:
 - How do its field lines look?

q

Recall that the magnitude
of E is related to the 
density of field lines per
unit area.

Field lines point out (or in) radially in all directions (3D)

Symmetry and the Electric Field

r

2r
How does the number of field lines per unit
area vary with distance?

- Inverse - square law: E
r

∝ 1
2

The lines spread
in 2 directions.

Symmetry and the Electric Field

Line of charge:

Now how does flux density
vary with distance?

Symmetry and the Electric Field

Line of charge:

Now how does flux density
vary with distance?

E ∝ 1

The lines spread  in 1 direction. 
In this case only the vertical 
                                       direction.
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Symmetry and the Electric Field

Sheet of charge:

Now how does the
field change with distance?

Symmetry and the Electric Field

Sheet of charge:

Now how does
field change with distance?

- Field is a constant!  (If sheet is infinite.)

The lines don’t spread at all.

Applications of Gauss’s Law

Gauss’s Law does what we just did above, but 
does it rigorously.

We are now going to look at various charged
objects and use Gauss’s law to find the 
field distribution.

A charge Q is uniformly distributed through a sphere of radius R.
What is the electric field as a function of r?  Find E at r1 and r2.

Problem: Sphere of Charge Q

r2

r1

R

A charge Q is uniformly distributed through a sphere of radius R.
What is the electric field as a function of r?  Find E at r1 and r2.

Problem: Sphere of Charge Q

r2

r1

Use symmetry!

This is spherically symmetric.
That means that E(r) is radially
outward, and that all points at a
given radius (|r|=r) have the same
magnitude of field.

R

E(r1)

E(r2)

Problem: Sphere of Charge Q

r

R

E & dA What is the enclosed charge?    Q

First find E(r) at a point outside the charged sphere.  Apply Gauss’s
 law, using as the Gaussian surface the sphere of radius r  pictured.
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Problem: Sphere of Charge Q

r

R

E & dA What is the enclosed charge?    Q

What is the flux through this surface?

= E dA∫ = EA = E(4π r 2 )

Gauss: 

So
!"
E (

!"
r ) = 1

4πεo

Q

r2
ˆ r 

Exactly as though all the
charge were at the origin!
(for r>R)

First find E(r) at a point outside the charged sphere.  Apply Gauss’s
 law, using as the Gaussian surface the sphere of radius r  pictured.

oo εε /Q/Qenclosed ==Φ

Q/ε 0 = Φ = E(4πr2 )

∫∫ =⋅=Φ dAEd AE
!!

Problem: Sphere of Charge Q

r

R

E(r)

Next find E(r) at a point inside the sphere.  Apply Gauss’s law,
using a little sphere of radius r as a Gaussian

What is the enclosed charge?
That takes a little effort.  The little sphere has
some fraction of the total charge.  What fraction?

That’s given by volume ratio: Qenc = r 3

R3 Q

Again the flux is: Φ = EA = E(4π r 2 )

oε/Q setting
enc

=Φ
2

o

33

r4

Q)R/(r
=E  gives

πε

rrE ˆr
R4

Q
=)(R,rfor 

3

oπε
!!

<

E(r)

Problem: Sphere of Charge Q

R

E(r) is proportional to r       for r<R
E(r) is proportional to 1/r2  for r>R

and E(r) is continuous at R

R

Problem: Sphere of Charge Q

Look closer at these results.  The electric field at      comes
from a sum over the contributions of all the little bits.

It’s obvious that the net E at this point will be horizontal.
But the magnitude from each bit is different; and it’s completely
not obvious that the magnitude E just depends on the distance
from the sphere’s center to the observation point.

Doing this as a volume integral would be HARD.
Gauss’s law is EASY.

Q r
r>R

Problem: Sphere of Charge Q

Now look at an observation point     inside the sphere.

Doing this as a volume integral would be HARD.
Gauss’s law is EASY.

Q

Because of the spherical symmetry,
the contributions from the bits
outside the radius of      exactly
cancel one another!

The field at r is exactly what you
would have if all the charge within
the radius r were concentrated to a
point at the origin.

R

r

r<R

σσσσ

Problem: Infinite charged plane

Consider an infinite plane with a constant charge density σ (which
is some number of Coulombs per square meter).  What is E at a
point a distance z above the plane?

x

y

z
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σσσσ

Problem: Infinite charged plane

Consider an infinite plane with a constant charge density σ (which
is some number of Coulombs per square meter).  What is E at a
point a distance z above the plane?

x

y

z

Use symmetry!

The electric field must point straight away
from the plane (if σ>0).  Maybe the magnitude
E depends on z, but the direction is fixed.  And
E is independent of x and y.

E E

E

Gaussian “pillbox”

σσσσ

Problem: Infinite charged plane

So choose a Gaussian surface which is a “pillbox” which has its top
above the plane and its bottom below the plane, each a distance z
from the plane.  That way the observation point lies in the top. 

z
z

E

E

Gaussian “pillbox”

σσσσ

Problem: Infinite charged plane

z
z

Let the area of the top and bottom be A.

Total charge enclosed by box = Aσ

E

E

Gaussian “pillbox”

σσσσ

Problem: Infinite charged plane

z
z

Outward flux through the top:       EA
Outward flux through the bottom: EA
Outward flux through the sides:     E x (some area) x cos(900)=0
So the total flux is:                         2EA

Let the area of the top and bottom be A.

E

E

Gaussian “pillbox”

σσσσ

Problem: Infinite charged plane

z
z

Gauss’s law then says that  Aσ/ε0=2EA so that E=σ/2ε0, outward.
This is constant everywhere in each half-space!

Let the area of the top and bottom be A.

Notice that the area A canceled: this is typical!

σσσσ

Problem: Infinite charged plane

Imagine doing this with an integral over the charge distribution:
break the surface into little bits dA.

dE

Doing this as a surface integral would be HARD.
Gauss’s law is EASY.
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• A conductor is a material in which charges
can move relatively freely.

• Usually these are metals.

• In a static condition, the charges placed on a
conductor will have moved as far from each
other as possible - they repel each other.

• In a static situation, the electric field is zero
everywhere inside a conductor.

Conductors Conductors

Why is E=0 inside a conductor?

Conductors

Why is E=0 inside a conductor?

Because conductors are full of free electrons, roughly
one per cubic Angstrom.  These are free to move.  If E
 is nonzero in some region, then the electrons there feel
a force -eE and start to move.

In an electrostatics problem, the electrons adjust their 
positions until the force on every electron is zero (or
else it would move!). That means when equilibrium is
reached, E=0 everywhere inside a conductor.

Conductors

Because E=0 inside, the inside is neutral.

Consequently the interior of a metal is neutral.  Any
excess charge ends up on the surface.

Suppose there is an extra charge     inside.
Gauss’s law for the little spherical surface
says there would be a nonzero E nearby.
But there can’t be, within a metal!

Electric field in conductors

+Q 

+Q+Q

 

a

b

Problem: Charged coaxial cable

This picture is a cross section of an infinitely long line of charge
surrounded by an infinitely long cylindrical conductor.  Find E.

This represents the line of charge.
Say it has a linear charge density of λ
(some number of C/m2).

This is the cylindrical conductor.  It
has inner radius a and outer radius b.

Use symmetry!
Clearly E points straight out, and its
amplitude depends only on r.
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Problem: Charged coaxial cable

First find E at positions in the space inside the cylinder (r<a).

Choose as a Gaussian surface a
cylinder of radius r and length L.

 r

L

What is the charge enclosed?    λL
What is the flux through the end caps?  zero (cos900)
What is the flux through the curved face?  E x (area) = E(2πrL)
Total flux = E(2πrL)
Gauss’s law:  E(2πrL) = λL/ε0   so    E(r) = λ/ 2πrε0 

Problem: Charged coaxial cable

First find E at positions in the space inside the cylinder (r<a).

 r

L

 

Problem: Charged coaxial cable

Now find E at positions within the cylinder (a<r<b).

r

Make the same kind of cylindrical Gaussian
surface.  Now the curved side is entirely
within the conductor, where E=0; hence the
flux is zero.

There’s no work to do:  within a conductor E=0.

Still, we can learn something from Gauss’s law.

+

Thus the total charge enclosed by this
surface must be zero.

 

Problem: Charged coaxial cable

r+

-
-

--

-

-

+

+

+

+

+

+

There must be a net charge per length -λ
attracted to the inner surface of the metal
so that the total charge enclosed by this
Gaussian surface is zero.

And since the cylinder is neutral, these
negative charges must have come from
the outer surface.  So the outer surface
has a charge density per length of +λ
spread around the outer perimeter.

So what is the field for r>b?  Easy!

Example Problem: Gauss’ Law for Gravity

“Gauss’ law for gravitation” is

In which Φg is the net flux of the gravitational field g through a
gaussian surface that encloses a mass (menclosed).  The field g is
defined to be the acceleration of a test particle on which menclosed

exerts a gravitational force.

Calculate Newton’s Law of Gravitation from this.

enclosedmG-4Ad g=
Surface
Gaussian

π=⋅Φ ∫
!!

g enclosedmG-4Ad g=
Surface
Gaussian

π=⋅Φ ∫
!!

g

dA gAd g=
Surface
Gaussian

Surface
Gaussian

∫∫ −=⋅Φ
!!

g

( )2

Surface
Gaussian

Surface
Gaussian

r4ggA

dA g=dA g=

π−=−=

−−Φ ∫∫g

2G4G4= mmenclosedΦ g

( )
2

2 r4gG4= ππΦ mg a
m

===→ 2

2G
gaccel.

2

21
1 r

mm
GmF == a

Example Problem: Gauss’ Law for Gravity


