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INTRODUCTION AND OBJECTIVES

Laboratory investigations involve taking measurements of 
physical quantities, and the process of taking any measure-
ment always involves some experimental uncertainty or 
error.* Suppose you and another person independently took 
several measurements of the length of an object. It is highly 
unlikely that you both would come up with exactly the same 
results. Or you may be experimentally verifying the value of 
a known quantity and want to express uncertainty, perhaps 
on a graph. Therefore, questions such as the following arise:

Whose data are better, or how does one express • 
the degree of uncertainty or error in experimental 
measurements?
How do you compare your experimental result with • 
an accepted value?
How does one graphically analyze and report • 
 experimental data?

In this introductory study experiment, types of experi-
mental uncertainties will be examined, along with some 

methods of error and data analysis that may be used in 
subsequent experiments.

After performing the experiment and analyzing the 
data, you should be able to do the following:

 1. Categorize the types of experimental uncertainty 
(error), and explain how they may be reduced.

 2. Distinguish between measurement accuracy and pre-
cision, and understand how they may be improved 
experimentally.

 3. Defi ne the term least count and explain the meaning 
and importance of significant figures (or digits) in 
reporting measurement values.

 4. Express experimental results and uncertainty in appro-
priate numerical values so that someone reading your 
report will have an estimate of the reliability of the 
data.

 5. Represent measurement data in graphical form so as to 
illustrate experimental data and uncertainty visually.

E X P E R I M E N T  1

Experimental Uncertainty (Error) 
and Data Analysis

 EQUIPMENT NEEDED

Rod or other linear object less than 1 m in length• 
Four meter-long measuring sticks with calibrations • 
of meter, decimeter, centimeter, and millimeter, 
respectively†

Pencil and ruler• 
Hand calculator• 
3 sheets of Cartesian graph paper• 
French curve (optional)• 

*Although experimental uncertainty is more descriptive, the term error 
is commonly used synonymously.

 THEORY

 A. Types of Experimental Uncertainty

Experimental uncertainty (error) generally can be 
 classifi ed as being of two types: (1) random or statistical 
error and (2) systematic error. These are also referred to as 
(1) indeterminate error and (2) determinate error, respec-
tively. Let’s take a closer look at each type of experimental 
uncertainty.

Random (Indeterminate) or Statistical Error
Random errors result from unknown and unpredictable 
variations that arise in all experimental measurement situa-
tions. The term indeterminate refers to the fact that there is 
no way to determine the magnitude or sign (+, too large; –, 
too small) of the error in any individual measurement. 
 Conditions in which random errors can result include:

 1. Unpredictable fluctuations in temperature or line 
voltage.

 2. Mechanical vibrations of an experimental setup.
 3. Unbiased estimates of measurement readings by the 

observer.

Repeated measurements with random errors give slightly 
different values each time. The effect of random errors 
may be reduced and minimized by improving and refi ning 
experimental techniques.

Systematic (Determinate) Errors
Systematic errors are associated with particular measure-
ment instruments or techniques, such as an improperly 
calibrated instrument or bias on the part of the observer. 
The term systematic implies that the same magnitude 
and sign of experimental uncertainty are obtained when 

†A 4-sided meter stick with calibrations on each side is commercially 
available from PASCO Scientifi c.
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the measurement is repeated several times. Determinate 
means that the magnitude and sign of the uncertainty can 
be determined if the error is identifi ed. Conditions from 
which systematic errors can result include

 1. An improperly “zeroed” instrument, for example, an 
ammeter as shown in ● Fig. 1.1.

 2. A faulty instrument, such as a thermometer that reads 
101 °C when immersed in boiling water at standard 
atmospheric pressure. This thermometer is faulty 
because the reading should be 100 °C.

 3. Personal error, such as using a wrong constant in cal-
culation or always taking a high or low reading of a 
scale division. Reading a value from a measurement 
scale generally involves aligning a mark on the scale. 
The alignment—and hence the value of the reading—
can depend on the position of the eye (parallax). 
Examples of such personal systematic error are shown 
in ● Fig. 1.2.

Avoiding systematic errors depends on the skill of the 
observer to recognize the sources of such errors and to 
 prevent or correct them.

B. Accuracy and Precision

Accuracy and precision are commonly used synonymously, 
but in experimental measurements there is an important 
distinction. The accuracy of a measurement signifi es how 
close it comes to the true (or accepted) value—that is, how 
nearly correct it is.

Example 1.1 Two independent measurement 
results using the diameter d and circumference c of a 
circle in the determination of the value of p are 3.140 
and 3.143. (Recall that p 5 c/d.) The second result is 

Figure 1.1 Systematic error. An improperly zeroed 
 instrument gives rise to systematic error. In this case 
the  ammeter, which has no current through it, would 
 systematically give an incorrect reading larger that the true 
value. (After  correcting the error by zeroing the meter, 
which scale would you read when using the ammeter?)

(a) Temperature measurement

(b) Length measurement

Figure 1.2 Personal error. Examples of personal error due 
to parallax in reading (a) a thermometer and (b) a meter 
stick. Readings may systematically be made either too 
high or too low.
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more accurate than the first because the true value of 
p, to four figures, is 3.142.

Precision refers to the agreement among repeated 
measurements—that is, the “spread” of the measurements 
or how close they are together. The more precise a group 
of measurements, the closer together they are. However, a 
large degree of precision does not necessarily imply accu-
racy, as illustrated in ● Fig. 1.3.

Example 1.2 Two independent experiments give two 
sets of data with the expressed results and uncertain-
ties of 2.5 6 0.1 cm and 2.5 6 0.2 cm, respectively.

The first result is more precise than the second 
because the spread in the first set of measurements 
is between 2.4 and 2.6 cm, whereas the spread in 
the second set of measurements is between 2.3 and 
2.7 cm. That is, the measurements of the first experi-
ment are less uncertain than those of the second.

Obtaining greater accuracy for an experimental 
value depends in general on minimizing systematic errors. 
Obtaining greater precision for an experimental value 
depends on minimizing random errors.

C. Least Count and Significant Figures

In general, there are exact numbers and measured numbers 
(or quantities). Factors such as the 100 used in calculating 
percentage and the 2 in 2pr are exact numbers. Measured 
numbers, as the name implies, are those obtained from 
measurement instruments and generally involve some 
error or uncertainty.

In reporting experimentally measured values, it is 
important to read instruments correctly. The degree of 

uncertainty of a number read from a measurement instru-
ment depends on the quality of the instrument and the 
fi neness of its measuring scale. When reading the value 
from a calibrated scale, only a certain number of fi gures 
or digits can properly be obtained or read. That is, only a 
certain number of fi gures are signifi cant. This depends on 
the least count of the instrument scale, which is the small-
est subdivision on the measurement scale. This is the unit 
of the smallest reading that can be made without estimat-
ing. For example, the least count of a meter stick is usually 
the millimeter (mm). We commonly say “the meter stick is 
calibrated in centimeters (numbered major divisions) with 
a millimeter least count.” (See ● Fig. 1.4.)

The significant figures (sometimes called signifi-
cant digits) of a measured value include all the numbers 
that can be read directly from the instrument scale, plus 
one doubtful or estimated number—the fractional part of 
the least count smallest division. For example, the length 
of the rod in Fig. 1.4 (as measured from the zero end) is 
2.64 cm. The rod’s length is known to be between 2.6 cm 
and 2.7 cm. The estimated fraction is taken to be 4/10 of 

Figure 1.3 Accuracy and precision. The true value in this analogy is the bull’s eye. The degree of scattering is an indication 
of precision—the closer together a dart grouping, the greater the precision. A group (or symmetric grouping with an average) 
close to the true value represents accuracy.

(a) Good precision, but poor accuracy (b) Poor precision and poor accuracy (c) Good precision and good accuracy

Rod

Figure 1.4 Least count. Meter sticks are commonly calibrated 
in centimeters (cm), the numbered major divisions, with a 
least count, or smallest subdivision, of millimeters (mm).
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the least count (mm), so the doubtful fi gure is 4, giving 
2.64 cm with three signifi cant fi gures.

Thus, measured values contain inherent uncertainty or 
doubtfulness because of the estimated fi gure. However, the 
greater the number of signifi cant fi gures, the greater the 
reliability of the measurement the number represents. For 
example, the length of an object may be read as 3.65 cm 
(three signifi cant fi gures) on one instrument scale and as 
3.5605 cm (fi ve signifi cant fi gures) on another. The latter 
reading is from an instrument with a fi ner scale (why?) and 
gives more information and reliability.

Zeros and the decimal point must be properly dealt 
with in determining the number of signifi cant fi gures in 
a result. For example, how many signifi cant fi gures does 
0.0543 m have? What about 209.4 m and 2705.0 m? In 
such cases, the following rules are generally used to deter-
mine signifi cance:

 1. Zeros at the beginning of a number are not signifi cant. 
They merely locate the decimal point. For example,

  0.0543 m has three signifi cant fi gures (5, 4, and 3).

 2. Zeros within a number are signifi cant. For example,

  209.4 m has four signifi cant fi gures (2, 0, 9, and 4).

 3. Zeros at the end of a number after the decimal point 
are signifi cant. For example,

  2705.0 has fi ve signifi cant fi gures (2, 7, 0, 5, and 0).

Some confusion may arise with whole numbers that 
have one or more zeros at the end without a decimal point. 
Consider, for example, 300 kg, where the zeros (called 
trailing zeros) may or may not be significant. In such 
cases, it is not clear which zeros serve only to locate the 
decimal point and which are actually part of the measure-
ment (and hence signifi cant). That is, if the fi rst zero from 
the left (300 kg) is the estimated digit in the measurement, 
then only two digits are reliably known, and there are only 
two signifi cant fi gures.

Similarly, if the last zero is the estimated digit (300 kg), 
then there are three signifi cant fi gures. This ambiguity is 
be removed by using scientifi c (powers of 10) notation:

3.0 3 102 kg has two signifi cant fi gures.

3.00 3 102 kg has three signifi cant fi gures.

This procedure is also helpful in expressing the 
signifi cant fi gures in large numbers. For example, sup-
pose that the average distance from Earth to the Sun, 
93,000,000 miles, is known to only four signifi cant fi g-
ures. This is easily expressed in powers of 10 notation: 
9.300 3 107 mi.

D. Computations with Measured Values

Calculations are often performed with measured val-
ues, and error and uncertainty are “propagated” by the 

 mathematical operations—for example, multiplication or 
division. That is, errors are carried through to the results 
by the mathematical operations.

The error can be better expressed by statistical meth-
ods; however, a widely used procedure for estimating the 
uncertainty of a mathematical result involves the use of 
signifi cant fi gures.

The number of signifi cant fi gures in a measured value 
gives an indication of the uncertainty or reliability of a 
measurement. Hence, you might expect that the result of 
a mathematical operation can be no more reliable than 
the quantity with the least reliability, or smallest num-
ber of significant figures, used in the calculation. That 
is, reliability cannot be gained through a mathematical 
operation.

It is important to report the results of mathematical 
operations with the proper number of signifi cant fi gures. 
This is accomplished by using rules for (1) multiplication 
and division and (2) addition and subtraction. To obtain 
the proper number of signifi cant fi gures, one rounds the 
results off. The general rules used for mathematical opera-
tions and rounding follow.

Significant Figures in Calculations
 1. When multiplying and dividing quantities, leave as 

many signifi cant fi gures in the answer as there are in the 
quantity with the least number of signifi cant fi gures.

 2. When adding or subtracting quantities, leave the same 
number of decimal places (rounded) in the answer 
as there are in the quantity with the least number of 
 decimal places.

Rules for Rounding*
 1. If the fi rst digit to be dropped is less than 5, leave the 

preceding digit as is.
 2. If the fi rst digit to be dropped is 5 or greater, increase 

the preceding digit by one.

Notice that in this method, fi ve digits (0, 1, 2, 3, and 
4) are rounded down and fi ve digits (5, 6, 7, 8, and 9) are 
rounded up.

What the rules for determining significant figures 
mean is that the result of a calculation can be no more 
accurate than the least accurate quantity used. That is, 
you cannot gain accuracy in performing mathematical 
operations.

These rules come into play frequently when doing 
mathematical operations with a hand calculator that may 
give a string of digits. ● Fig. 1.5 shows the result of the 
division of 374 by 29. The result must be rounded off to 
two signifi cant fi gures—that is, to 13. (Why?)

*It should be noted that these rounding rules give an approximation of 
accuracy, as opposed to the results provided by more advanced statistical 
methods.
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Example 1.3 Applying the rules.

Multiplication:
2.5 m 3 1.308 m 5 3.3 m2

 (2 sf) (4 sf) (2 sf)

Division:
(4 sf)

882.0 s

0.245 s
5 3600 s 5 3.60 3 103 s

(3 sf)  (represented to three 
signifi cant fi gures; why?)

Addition:
46.4
 1.37
 0.505

48.275  48.3
(rounding off)

(46.4 has the least number of decimal places)

Subtraction:
163

24.5

158.5 S 159
(rounding off)

(163 has the least number of decimal places, none)

Figure 1.5 Insignifi cant fi gures. The calculator shows the 
result of the division operation 374/29. Because there are 
only two significant figures in the 29, a reported result 
should have no more than two signifi cant fi gures, and the 
calculator display value should be rounded off to 13.

*It should be noted that percent error only gives a measure of experi-
mental error or uncertainty when the accepted or standard value is highly 
accurate. If an accepted value itself has a large degree of uncertainty, then 
the percent error does not give a measure of experimental uncertainty.

E. Expressing Experimental Error and Uncertainty

Percent Error
The object of some experiments is to determine the value 
of a well-known physical quantity—for example, the value 
of p.

The accepted or “true” value of such a quantity 
found in textbooks and physics handbooks is the most 
accurate value (usually rounded off to a certain number of 
signifi cant fi gures) obtained through sophisticated experi-
ments or mathematical methods.

The absolute difference between the experimen-
tal value E and the accepted value A, written 0E 2 A 0 ,
is the positive difference in the values, for example, 
0 2 2 4 0 5 022 0 5 2 and 0 4 2 2 0 5 2. Simply subtract 
the smaller value from the larger, and take the result as 
positive. For a set of measurements, E is taken as the aver-
age value of the experimental measurements.

The fractional error is the ratio of the absolute differ-
ence and the accepted value:

 Fractional error 5
absolute difference

accepted value
 

or

 Fractional error 5
0E 2 A 0

A
 (1.1)

The fractional error is commonly expressed as a 
percentage to give the percent error of an experimental 
value.*

Percent error 5
absolute difference

accepted value
 3 100% 

or

 Percent error 5
0E 2 A 0

A
3 100%  (1.2)

Example 1.4 A cylindrical object is measured to 
have a diameter d of 5.25 cm and a circumference 
c of 16.38 cm. What are the experimental value of p 
and the percent error of the experimental value if the 
accepted value of p to two decimal places is 3.14?

Solution with d 5 5.25 cm and c 5 16.38 cm,

c 5 pd or p 5
c

d
5

16.38

5.25
5 3.12
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Then E 5 3.12 and A 5 3.14, so

  Percent error 5
0E 2 A 0

A
3 100%

  5
0 3.12 2 3.14 0

3.14
3 100%

  5
0.02

3.14
3 100% 5 0.6%

Note: To avoid rounding errors, the preferred order of 
 operations is addition and subtraction before multiplica-
tion and division.*

If the uncertainty in experimentally measured values 
as expressed by the percent error is large, you should check 
for possible sources of error. If found, additional measure-
ments should then be made to reduce the uncertainty. Your 
instructor may wish to set a maximum percent error for 
experimental results.

Percent Difference
It is sometimes instructive to compare the results of two 
measurements when there is no known or accepted value. 
The comparison is expressed as a percent difference, 
which is the ratio of the absolute difference between the 
experimental values E2 and E1 and the average or mean 
value of the two results, expressed as a percent.

Percent difference 5
absolute difference

average
3 100%

or

 Percent difference 5
0E2 2 E1 0

(E2 1 E1)/2
3 100% (1.3)

Dividing by the average or mean value of the experi-
mental values is logical, because there is no way of decid-
ing which of the two results is better.

Example 1.5 What is the percent difference between 
two measured values of 4.6 cm and 5.0 cm?

Solution With E1 5 4.6 cm and E2 5 5.0 cm,

Percent difference 5
0E2 2 E1 0

(E2 1 E1)/2
3 100%

 Percent difference 5
0 5.0 2 4.6 0

(5.0 1 4.6)/2
3 100%

  5
0.4

4.8
3 100% 5 8%

As in the case of percent error, when the percent difference 
is large, it is advisable to check the experiment for errors 
and possibly make more measurements.

In many instances there will be more than two mea-
surement values.

When there are three or more measurements, the percent 
difference is found by dividing the absolute value of the 
difference of the extreme values (that is, the values with 
greatest difference) by the average or mean value of all the 
measurements.

Average (Mean) Value
Most experimental measurements are repeated several 
times, and it is very unlikely that identical results will be 
obtained for all trials. For a set of measurements with pre-
dominantly random errors (that is, the measurements are 
all equally trustworthy or probable), it can be shown math-
ematically that the true value is most probably given by 
the average or mean value.

The average or mean value x of a set of N measure-
ments is

x 5
x1 1 x2 1 x3 1c1 xN

N
5

1

Na
N

i51
xi (1.4)

where the summation sign S is a shorthand notation indi-
cating the sum of N measurements from x1 to xN. ( x is com-
monly referred to simply as the mean.)

Example 1.6 What is the average or mean value of 
the set of numbers 5.42, 6.18, 5.70, 6.01, and 6.32?

  x 5
1

N
 a

N

i51
xi

 5
5.42 1 6.18 1 5.70 1 6.01 1 6.32

5

  5 5.93

There are other, more advanced methods to express the 
dispersion or precision of sets of measurements. Two of 
these are given in the appendices. Appendix C: “Abso-
lute Deviation from the Mean and Mean Absolute Devia-
tion,” and Appendix D: “Standard Deviation and Method 
of Least Squares.”

*Although percent error is generally defi ned using the absolute difference 
|E 2 A|, some instructors prefer to use (E 2 A), which results in positive 
(1) or negative (2) percent errors, for example, 20.6% in Example 1.4. 
In the case of a series of measurements and computed percent errors, this 
gives an indication of systematic error.
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F. Graphical Representation of Data

It is often convenient to represent experimental data in 
graphical form, not only for reporting but also to obtain 
information.

Graphing Procedures
Quantities are commonly plotted using rectangular 
 Cartesian axes (X and Y ). The horizontal axis (X) is called 
the abscissa, and the vertical axis (Y ), the ordinate. The 
location of a point on the graph is defi ned by its coordi-
nates x and y, written (x, y), referenced to the origin O, the 
intersection of the X and Y axes.

When plotting data, choose axis scales that are easy to 
plot and read. The graph in ● Fig. 1.6A shows an example 
of scales that are too small. This “bunches up” the data, mak-
ing the graph too small, and the major horizontal scale values 
make it diffi cult to read intermediate values. Also, the dots or 
data points should not be connected. Choose scales so that 

most of the graph paper is used. The graph in ● Fig. 1.6B 
shows data plotted with more appropriate scales.*

Also note in Fig. 1.6A that scale units on the axes are 
not given. For example, you don’t know whether the units 
of displacement are feet, meters, kilometers, or whatever. 
Scale units should always be included, as in Fig. 1.6B. It is 
also acceptable, and saves time, to use standard unit abbre-
viations, such as N for newton and m for meter. This will 
be done on subsequent graphs.

With the data points plotted, draw a smooth line 
described by the data points. Smooth means that the line 
does not have to pass exactly through each point but 
 connects the general areas of signifi cance of the data points 
(not connecting the data points as in Fig. 1.6A). The graph 

*As a general rule, it is convenient to choose the unit of the fi rst major 
scale division to the right or above the origin or zero point as 1, 2, or 5 
(or multiples or submultiples thereof, for example, 10 or 0.1) so that the 
minor (intermediate) scale divisions can be easily interpolated and read.

Figure 1.6A Poor graphing. An example of an improperly labeled and plotted graph. See text for description.

F
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Displacement x 
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Figure 1.6B Proper graphing. An example of a properly labeled and plotted graph. See text for description.
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1.5
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Name

Date

Force (F )  versus displacement (x )  of a spring

Sept. 21, 2009
Jane Doe
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in Fig. 1.6B with an approximately equal number of points 
on each side of the line gives a “line of best fi t.”†

In cases where several determinations of each experi-
mental quantity are made, the average value is plotted and 
the mean deviation or the standard deviation may be  plotted 
as error bars. For example, the data for the period of a 
mass oscillating on a spring given in Table 1.1 are plotted 
in ● Fig. 1.7, period (T) versus mass (m). (The d is the mean 
deviation, shown here for an illustration of error bars. See 
Appendix C.)* A smooth line is drawn so as to pass within 
the error bars. (Your instructor may want to explain the use 
of a French curve at this point.)

Graphs should have the following elements (see 
Fig. 1.7):

 1. Each axis labeled with the quantity plotted.
 2. The units of the quantities plotted.
 3. The title of the graph on the graph paper (commonly 

listed as the y-coordinate versus the x-coordinate).
 4. Your name and the date.

Straight-Line Graphs
Two quantities (x and y) are often linearly related; that is, 
there is an algebraic relationship of the form y 5 mx 1 b, 
where m and b are constants. When the values of such 
quantities are plotted, the graph is a straight line, as shown 
in ● Fig. 1.8.

The m in the algebraic relationship is called the slope 
of the line and is equal to the ratio of the intervals Dy/Dx. 
Any set of intervals may be used to determine the slope of 
a straight-line graph; for example, in Fig. 1.8,

m 5
Dy1

Dx1
5

15 cm

2.0 s
5 7.5 cm/s

m 5
Dy2

Dx2
5

45 cm

6.0 s
5 7.5 cm/s

Table 1.1 Data for Figure 1.7

Mass (kg) Period (s) 6 d

0.025 1.9 6 0.40
0.050 2.7 6 0.30
0.10 3.8 6 0.25
0.15 4.6 6 0.28
0.20 5.4 6 0.18
0.25 6.0 6 0.15

Points should be chosen relatively far apart on the line. For 
best results, points corresponding to data points should not 
be chosen, even if they appear to lie on the line.

The b in the algebraic relationship is called the y- intercept 
and is equal to the value of the y-coordinate where the graph 
line intercepts the Y-axis. In Fig. 1.8, b 53 cm. Notice from the 
relationship that y 5 mx 1 b, so that when x 5 0, then y 5 b. 
If the intercept is at the origin (0, 0), then b 5 0.

The equation of the line in the graph in Fig. 1.8 is d 5 
7.5t 1 3. The general equation for uniform motion has the 
form d = vt 1 do. Hence, the initial displacement do 5 3 cm 
and the speed v 5 7.5 cm/s.

Some forms of nonlinear functions that are  common 
in physics can be represented as straight lines on a 
 Cartesian graph. This is done by plotting nonlinear  values. 
For  example, if

y 5 ax2 1 b

is plotted on a regular y-versus-x graph, a parabola would be 
obtained. But if x2 5 x' were used, the equation becomes

y 5 ax' 5 b

which has the form of a straight line.
This means plotting y versus x', would give a straight 

line. Since x' 5 x2, the squared values of x must be plotted. 
That is, square all the values of x in the data table, and plot 
these numbers with the corresponding y values.

Other functions can be “straightened out” by this pro-
cedure, including an exponential function:

y 5 Aeax

In this case, taking the natural logarithm of both sides:

ln y 5 ln A 1 ln eax

or

ln y 5 ax 1 ln A

(where ln ex 5 x)
Plotting the values of the natural (base e) logarithm versus 
x gives a straight line with slope a and an intercept ln A.

Similarly, for

y 5 axn

using the common (base 10) logarithm,

log y 5 log a 1 log xn

and

log y 5 n log x 1 log a

(where log xn 5 n log x).

†The straight line of “best fit” for a set of data points on a graph can 
be determined by a statistical procedure called linear regression, using 
what is known as the method of least squares. This method determines 
the best-fi tting straight line by means of differential calculus, which is 
beyond the scope of this manual. The resulting equations are given in 
Appendix D, along with the procedure for determining the slope and 
 intercept of a best-fi tting straight line.
*The mean deviation and standard deviation are discussed in Appendix C and 
D, respectively. They give an indication of the dispersion of a set of  measured 
values. These methods are optional at your instructor’s discretion.
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Figure 1.7 Error bars. An example of graphically presented data with error bars. An error bar indicates the precision of a 
measurement. In this case, the error bars represent mean deviations.

Plotting the values of log y versus log x gives a straight 
line with slope n and intercept log a. (See Appendix E.)

EXPERIMENTAL PROCEDURE

Complete the exercises in the Laboratory Report, showing 
calculations and attaching graphs as required. (Note: In 

this experiment and throughout, attach an additional sheet 
for calculations if necessary.)
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Figure 1.8 Straight-line slope. Examples of intervals for determining the slope of a straight line. The slope is the ratio of 
Dy/Dx (or Dd/Dt). Any set of intervals may be used, but the endpoints of an interval should be relatively far apart, as 
for Dy2/Dx2.
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E X P E R I M E N T  1

Experimental Uncertainty (Error) 
and Data Analysis

 Laboratory Report

 1. Least Counts
(a) Given meter-length sticks calibrated in meters, decimeters, centimeters, and millimeters, 

respectively. Use the sticks to measure the length of the object provided and record with 
the appropriate number of signifi cant fi gures in Data Table 1.

DATA TABLE 1

Purpose: To express least counts and measurements.

Object Length

m dm cm mm

Actual length 
(Provided by instructor after measurements)
Comments on the measurements in terms of least counts:

(b) Find the percent errors for the four measurements in Data Table 1.

DATA TABLE 2

Purpose: To express the percent errors.

Object Length

Least Count

% Error

Comments on the percent error results:

 2. Signifi cant Figures
(a) Express the numbers listed in Data Table 3 to three significant figures, writing the 

 numbers in the fi rst column in normal notation and the numbers in the second column 
in powers of 10 (scientifi c) notation.

(continued)
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DATA TABLE 3

Purpose: To practice expressing signifi cant fi gures.

0.524 __________ 5280 __________

15.08 __________ 0.060 __________

1444 __________ 82.453 __________

0.0254 __________ 0.00010 __________

83,909 __________ 2,700,000,000 __________

(b) A rectangular block of wood is measured to have the dimensions 11.2 cm 3 3.4 cm 3 
4.10 cm. Compute the volume of the block, showing explicitly (by underlining) how 
doubtful fi gures are carried through the calculation, and report the fi nal answer with the 
correct number of signifi cant fi gures.

Calculations Computed volume
(show work) (in powers of 10 notation) ___________________ 

(units)

(c) In an experiment to determine the value of p, a cylinder is measured to have an average 
value of 4.25 cm for its diameter and an average value of 13.39 cm for its circumfer-
ence. What is the experimental value of p to the correct number of signifi cant fi gures?

Calculations
(show work) Experimental value of p ___________________

(units)
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 3. Expressing Experimental Error
(a) If the accepted value of p is 3.1416, what are the fractional error and the percent error 

of the experimental value found in 2(c)?

Calculations
(show work) Fractional error ___________________

 Percent error ___________________

(b) In an experiment to measure the acceleration g due to gravity, two values, 9.96 m/s2 

and 9.72 m/s2, are determined. Find (1) the percent difference of the measurements, 
(2) the percent error of each measurement, and (3) the percent error of their mean. 
 (Accepted value: g 5 9.80 m/s2.)

Calculations
(show work) Percent difference ___________________

 Percent error of E1 ___________________

 Percent error of E2 ___________________

 Percent error of mean ___________________

(continued)
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(c) Data Table 4 shows data taken in a free-fall experiment. Measurements were made of 
the distance of fall (y) at each of four precisely measured times. Complete the table. 
Use only the proper number of signifi cant fi gures in your table entries, even if you 
carry extra digits during your intermediate calculations.

DATA TABLE 4

Purpose: To practice analyzing data.

Time t

(s)

Distance (m)

y
(Optional) 

d
t2

(       )y1 y2 y3 y4 y5

0 0 0 0 0 0

0.50 1.0 1.4 1.1 1.4 1.5

0.75 2.6 3.2 2.8 2.5 3.1

1.00 4.8 4.4 5.1 4.7 4.8

1.25 8.2 7.9 7.5 8.1 7.4

(d) Plot a graph of y versus t (optional: with 2d error bars) for the free-fall data in part (c). 
Remember that t 5 0 is a known point.

(e) The equation of motion for an object in free fall starting from rest is y 5 1
2 gt2, where 

g is the acceleration due to gravity. This is the equation of a parabola, which has the 
general form y 5 ax2.

Convert the curve into a straight line by plotting y versus t2. That is, plot the square 
of the time on the abscissa. Determine the slope of the line and compute the experimen-
tal value of g from the slope value.

Calculations
(show work)  Experimental value of g from graph _____________________
 (units)
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(f) Compute the percent error of the experimental value of g determined from the graph in 
part (e). (Accepted value: g 5 9.8 m/s2.)

Calculations
(show work) Percent error ________________

(g) The relationship of the applied force F and the displacement x of a spring has the gen-
eral form F 5 kx, where the constant k is called the spring constant and is a measure 
of the “stiffness” of the spring. Notice that this equation has the form of a straight line. 
Find the value of the spring constant k of the spring used in determining the experi-
mental data plotted in the Fig. 1.6B graph. (Note: Because k 5 F/x, the units of k in the 
graph are N/m.)

Calculations
(show work) Value of spring constant of
 spring in Fig. 1.6B graph ____________________
  (units)

(h) The general relationship of the period of oscillation T of a mass m suspended on a 
spring is T 5 2p!m/k, where k is the spring constant. Replot the data in Fig. 1.7 so as 
to obtain a straight-line graph, and determine the value of the spring constant used in 
the experiment. [Hint: Square both sides of the equation, and plot in a manner similar 
to that used in part (e).] Show the fi nal form of the equation and calculations.

Calculations
(show work) Value of spring constant of
 spring in Fig. 1.7 ____________________
  (units)

(i) The data in sections (g) and (h) above were for the same spring. Compute the percent difference for the values of the 
spring constants obtained in each section.

(continued)



20

0 1 2 3 4 5 6

Ruler 3

0 1 2 3 4 5 6

Ruler 2 cm

cm

0 1 2 3 4 5 6

Ruler 1 cm

Figure 1.9 

 2. Were the measurements of the block in part (b) of Procedure 2 all done with the same 
 instrument? Explain.

 3. Referring to the dart analogy in Fig. 1.3, draw a dart grouping that would represent poor 
precision but good accuracy with an average value.

 4. Do percent error and percent difference give indications of accuracy or precision? Discuss 
each.

 5. Suppose you were the fi rst to measure the value of some physical constant experimentally. 
How would you provide an estimate of the experimental uncertainty?
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 QUESTIONS

 1. Read the measurements on the rulers in ● Fig. 1.9, and comment on the results.


