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Abstract  

This paper discusses the principles of study design and related 
methodologic issues in environmental epidemiology. Emphasis is 
given to studies aimed at evaluating causal hypotheses regarding 
exposures to suspected health hazards. Following background 
sections on the quantitative objectives and methods of population-
based research, we present the major types of observational designs 
used in environmental epidemiology: first, the three basic designs 
involving the individual as the unit of analysis (i.e., cohort, cross-
sectional, and case-control studies) and a brief discussion of genetic 
studies for assessing gene-environment interactions; second, various 
ecologic designs involving the group or region as the unit of analysis. 
Ecologic designs are given special emphasis in this paper because of 
our lack of resources or inability to accurately measure environmental 
exposures in large numbers of individuals. The paper concludes with 
a section highlighting current design issues in environmental 
epidemiology and several recommendations for future work. -- 
Environ Health Perspect 101(Suppl 4):23-38 (1993). 
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Introduction 

The purpose of this article is to discuss the principles of study design 
and related methodologic issues in environmental epidemiology. The 
focus is on studies aimed at evaluating causal hypotheses regarding 
exposures to suspected health hazards. Because the intended 
audience for this document includes scientists without formal training 
in epidemiology, parts of this article highlight basic principles of 
epidemiologic research. Nevertheless, we also try to summarize 
comprehensively the current state of the art and make 
recommendations for future developments in study design. For more 
extensive treatment of general research principles and methods in 
epidemiology, the interested reader should consult available 
textbooks in this area (1-6). More detailed examples of applications in 
environmental epidemiology may be found in several other books, 
such as those edited by Leaverton (7), Chiazze et al. (8), Goldsmith 
(9), and Kopfler and Craun (10). 

Population Parameters 

The major quantitative objectives of most epidemiologic studies are to 
estimate two types of population parameters: the frequency of 
disease occurrence in particular populations and the effect of a given 
exposure on disease occurrence in a particular population. 

Measures of disease frequency involve the occurrence of new cases 
or deaths (incidence/mortality) or the presence of existing cases 
(prevalence). In both applications, the number of cases is expressed 
relative to the size of the population from which the cases are 
identified. With incidence measures, this denominator is the (base) 
population at risk (i.e., individuals who are eligible to become cases). 
Thus, the base population of a study (or study base) is the group of 
all individuals who, if they developed the disease, would become 
cases in the study (3,11,12). 

Disease incidence, which is central to the process of causal 
inference, can be expressed as a cumulative measure (risk) or as a 
person-time measure (rate). The cumulative incidence (incidence 
proportion) or average risk in a base population is the probability of 
someone in that population developing the disease during a specified 



period, conditional on not dying first from another disease (13). The 
term cumulative incidence or cumulative incidence rate also is 
defined somewhat differently as the integral over the follow-up period 
of the hazard (rate) function (14). The incidence rate or instantaneous 
risk (hazard) is the limit of the average risk for a given period, per unit 
of time, as the duration of the period approaches zero. The average 
rate (incidence density) for a given period is estimated as the number 
of incident events divided by the amount of person-time experienced 
by the base population. For example, a rate of 0.001/year means that 
we would expect one new case to occur for every 1000 person-years 
of follow-up (e.g., 100 disease-free people followed for an average of 
10 years). 

Although there are many quantitative methods for expressing the 
magnitude of a statistical association between two variables (e.g., 
exposure status and disease occurrence), we are usually interested 
in a special class of such measures that reflect the net effect of the 
exposure on disease occurrence (i.e., causal parameters). In general, 
a causal parameter for a target population is a hypothetical contrast--
in the form of a difference or ratio--between what the frequency of 
disease would be if everyone were exposed (at a given level) to what 
the frequency would be if everyone were unexposed (often called the 
reference level) (15). When this difference for a specific exposure is 
not zero (the ratio is not one), we say that the exposure is a risk 
factor for that disease in the target population. In practice, we 
estimate causal parameters indirectly by comparing disease 
frequency for an exposed group with disease frequency for an 
unexposed group. Epidemiologists typically estimate the risk or rate 
ratio (often called the relative risk) by comparing the exposed 
population with an unexposed population. The key assumption of this 
statistical approach is that the risk or rate observed for the unexposed 
group is the same (within confounder strata) as the risk or rate that 
would have been observed in the exposed group if that group had not 
been exposed (16). Thus, the (true) risk ratio may be interpreted as a 
causal parameter, which is the number of cases actually occurring in 
the exposed (target) population divided by the number of cases that 
would have occurred in the absence of exposure. 

Certain measures of association, such as correlation coefficients and 
standardized regression coefficients, do not, in general, reflect any 



causal parameters. The reason is that the magnitude of these 
measures depends in part on the relative variances of the exposure 
and disease variables, which are influenced by the sampling strategy 
(i.e., noncausal parameters) (17,18). Another measure of association, 
the odds ratio, is used in certain types of epidemiologic studies (case-
control designs) to estimate the risk or rate ratio indirectly when we 
cannot first estimate the incidence rate or risk in the exposed and 
unexposed populations (1-6,19,20). 

Problems in Environmental Epidemiology 

There are several general problems in environmental epidemiology 
that tend to limit causal inference and, therefore, shape design 
decisions. 

Long Latent Periods. The interval between first exposure to an 
environmental risk factor (or the start of causal action of this factor) 
and disease detection (or symptom onset) may be many years or 
even decades. Such long latent periods are partly due to limitations of 
medical technology and incomplete surveillance for detecting 
disease; yet they are also due to a prolonged induction period in 
which years are needed for the disease process to begin (5). The 
term latent period also is used more specifically to indicate the 
hypothetical interval between disease initiation and detection (5). 
Refer also to Armenian and Lilienfeld (21) who discuss alternative 
definitions of latency. Unfortunately, long latent periods produce 
important practical constraints on our ability to estimate exposure 
effects. The investigator must either observe subjects for many years 
or rely on retrospective (historical) measurement of key variables. 
The latter alternative may be infeasible for certain types of exposures 
or in certain populations. Even when feasible, however, retrospective 
measurement usually increases the amount of error with which 
exposures are measured (see below). Furthermore, the level of most 
environmental exposures and many extraneous risk factors changes 
appreciably or unpredictably over time; long latent periods, therefore, 
seriously complicate our ability to estimate effects (22). 

Errors of Exposure Measurement. A major challenge in 
environmental epidemiology is to measure accurately each 
individual's exposure to hypothesized risk factors (i.e., the biologically 



relevant dose [Thomas and Hatch, this issue]). This task is made very 
difficult by the lack of information about environmental sources of 
emission, the complex pattern of most long-term exposures, the 
individual's ignorance of previous opportunities for exposure, the lack 
of good biological indicators of exposure level, and the lack of 
sufficient resources to collect individual exposure data on large 
populations. The consequences of exposure mismeasurement are 
probable bias in the estimation of effect (see "Sources of 
Epidemiologic Bias") and possible loss of precision and power with 
which effects are estimated and tested (23,24). The problem and 
issues of exposure measurement are discussed more thoroughly by 
Hatch and Thomas in this issue. 

Rare Diseases, Low-Level Exposures, and Small Effects. In most 
epidemiologic studies of environmental hazards, statistical objectives 
may be further compromised by the infrequent occurrence of the 
disease or outcome of interest, by the low prevalence or levels of 
environmental exposures in the general population, and by the 
search for small effects (for which the true rate ratio is between 0.5 
and 2). A critical consequence of these features is usually substantial 
loss of precision and power with which effects are estimated and 
tested. In addition, it becomes more difficult for the investigator to 
separate the effect of the exposure of interest from the distorting 
effects of extraneous factors. Causal inference can then be seriously 
compromised. 

Research Objectives and Strategies 

Given the above problems, epidemiologists must carefully plan their 
studies, analyze their data, and interpret their findings. Inaccurate 
results reflect both random errors of estimation (chance) and 
systematic errors or bias. An epidemiologically unbiased or valid 
estimate of a causal parameter is one that is expected to represent 
perfectly (aside from chance) the true value of the parameter in the 
base population. 

Sources of Epidemiologic Bias 

A common framework for describing the validity of epidemiologic 
research is to consider three sources of bias in the estimation of 



effect: selection bias, information bias, and confounding (2). Despite 
the practical attractiveness of this framework, the three types of bias 
are not entirely separate concepts. The amount of confounding, for 
example, can depend on how subjects are selected. 

Selection Bias. Selection bias means that the way in which subjects 
are selected into the study population or into the analysis (due to lost 
subjects or missing data) distorts the effect estimate. In general, this 
problem occurs when either disease status or exposure status 
influences the selection of subjects to a different extent in the groups 
being compared. Selection bias is most likely to be problematic when 
the investigator does not identify the base population from which 
study cases arose. 

Information Bias. Information bias means that the nature or quality 
of measurement or data collection distorts the effect estimate. The 
primary source of information bias is error in measuring one or more 
variables. When exposure status or disease status is misclassified, 
bias usually occurs. If the probabilities of misclassification of each 
variable are the same for each category of the other variable 
(nondifferential misclassification) and if the errors for different 
variables are independent, the estimate of effect is usually biased 
toward the null value (indicating no effect). Possible exceptions to this 
principle of nondifferential misclassification leading to conservative 
effect estimates arise when the misclassified exposure variable is 
categorized into more than two groups (25). In other situations 
involving differential misclassification (unequal misclassification 
probabilities) or correlated measurement errors, the effect estimate 
may be biased in either direction. In many studies, therefore, the 
magnitude of misclassification bias is difficult to predict, especially 
when other biases are operating. 

Confounding. Confounding refers to a lack of comparability between 
exposure groups (e.g., exposed versus unexposed) such that disease 
risk would be different even if the exposure were absent or the same 
in both populations (16). Thus, confounding is epidemiologic bias in 
the estimation of a causal parameter (see "Population Parameters"). 
Because there is no empirical method for directly observing the 
presence or magnitude of confounding, in practice we attempt to 
identify and control for manifestations of confounding. This is done by 



searching for differences between exposure groups in the distribution 
of extraneous risk factors for the disease, which are called 
confounders. Thus, a confounder is a risk factor (or proxy) that is 
associated with exposure status in the base population. A covariate 
meeting these criteria is not a confounder, however, if its association 
with the exposure is due entirely to the effect of the exposure on the 
covariate; for example, the covariate might be an intermediate 
variable in the causal pathway between the exposure and disease. If 
the exposure and covariate are time-dependent variables, it is 
possible for that covariate to be both a confounder and an 
intermediate variable (see "Cohort Study"). 

The Need for Covariate Data 

In addition to the exposure of interest, there is the need in virtually all 
epidemiologic studies to collect data on other known or possible risk 
factors for the disease. These covariates may be relevant to the 
exposure effect in three ways: a) as confounders, b) as intermediate 
variables, and c) as effect modifiers. 

The effects of confounders must be controlled or removed analytically 
to obtain unbiased estimates of causal parameters. This control is 
usually achieved through stratification or model fitting. The 
assessment and control of intermediate variables can elucidate 
causal mechanisms that explain exposure effects (26). This approach 
often leads to new etiologic hypotheses and new intervention 
strategies for disease prevention. 

When the exposure-effect measure varies across categories or levels 
of another factor, we call the second factor an effect modifier; this 
statistical phenomenon is called effect modification or an interaction 
effect. The assessment of effect modification is model-dependent, 
meaning that it depends on what (causal) parameter is used to 
measure the effect (2-6). For example, an extraneous risk factor that 
does not modify the risk ratio for the exposure will modify the risk 
difference. The assessment of effect modification is important for 
properly specifying the predictors in statistical models (2,14), for 
making inferences about possible biological (causal) interactions 
between exposures (e.g., synergy) (5), and for generalizing one's 
results to other populations (see "Cohort Study"). 



Types of Research 

There are three general design strategies for conducting population 
research: a) experiments in which the investigators randomly assign 
(randomize) subjects to two or more treatment (exposure) groups; b) 
quasi-experiments in which the investigators make the assignments 
to treatment groups nonrandomly; and c) observational studies in 
which the investigators simply observe exposure (treatment) status in 
subjects without assignment (2). Although some epidemiologists 
classify the first two types as intervention studies, observational 
studies might also involve the evaluation of an intervention that was 
not implemented or controlled by the investigators. Social scientists 
often use the term quasi-experiment to mean any type of 
nonrandomized study (27). 

Experiments. In a simple experiment, there are usually two 
treatment groups. One group is assigned to receive the new 
experimental intervention and the other (control) group is assigned to 
receive no intervention, a sham intervention (placebo), or another 
available intervention. Simple randomization of individuals to 
treatment groups implies that all possible allocation schemes of 
assigned subjects are equally likely (28). Following randomization, 
the investigator follows subjects for subsequent disease occurrence 
or change in outcome status. A comparison of risks between 
treatment groups provides an estimate of a causal parameter 
reflecting the treatment effect. 

Because experiments are best suited ethically and practically to the 
study of health benefits, not hazards, experiments in environmental 
epidemiology would usually be limited to the study of preventive 
interventions. Furthermore, it is generally impossible or infeasible to 
randomize subjects individually. The only practical alternative, 
therefore, is to randomize by group, where the group might be a city, 
school, work site, etc. (29). The major limitation of group 
randomization is some within-group dependence (correlation) of the 
outcome variable, which reduces precision and power (30,31). Thus, 
the effective sample size falls between the number of randomized 
groups and the total number of subjects (see Prentice and Thomas, 
this issue). 



As an example, consider the hypothesis that the intake of fluoride 
ions in drinking water has a protective effect on the occurrence of 
dental caries in children. An experiment might be conducted by 
randomly assigning many water districts (each with one fluoride-
deficient water supply without treatment) either to implement sodium 
fluoride treatment under the control of the investigators or to continue 
its current policy of no treatment for the duration of follow-up. 
Assuming the hypothesis were true, we would expect the subsequent 
incidence rate of dental caries to be lower in the treated districts than 
in the untreated districts. 

Randomization insures a valid comparison of subjects according to 
intended treatment, i.e., assigned treatment, but not according to 
treatment actually received (16,28). That is, randomization of a 
sufficient number of units (subjects or groups) provides some 
assurance that the assigned treatment groups are comparable with 
respect to inherent risk. This does not imply that there can be no 
confounding in a comparison of randomly assigned groups. Even with 
perfect adherence to treatment assignments and no loss to follow-up, 
assigned groups might have, by chance, different hypothetical risks in 
the absence of treatment. Nevertheless, such confounding, if it exists, 
is equally likely to be positive or negative; conventional confidence-
interval estimates and p values reflect the possibility of this bias, 
which becomes smaller as the (effective) sample size increases (28). 
This protection against confounding afforded by randomization, 
however, does not apply to lack of adherence or loss to follow-up, 
both of which usually do not occur randomly. Furthermore, if some 
subjects cross over between treatments (e.g., residents of a 
fluoridated district obtain their water from nonfluoridated districts), a 
comparison of assigned groups will underestimate the true treatment 
effect even when the crossover is random (32). A comparison of 
compliers with noncompliers, on the other hand, is essentially 
observational and therefore prone to bias. 

Quasi-Experiments. A quasi-experiment may be done similarly to an 
experiment by comparing two or more nonrandomized groups, or it 
may be done by comparing one or more groups over time, before 
versus after the intervention is initiated in at least one group. With the 
latter approach, the composition of each group may change over time 



so that subjects observed before the intervention are not the same 
subjects observed after the intervention. 

Returning to the fluoride hypothesis, a quasi-experiment was done in 
the 1940s and 1950s by comparing two similar, nearby cities in New 
York State, both of which lacked fluoride treatment before 1945. 
Newburgh started sodium fluoride treatment in 1945 and continued 
throughout the 10-yr postintervention follow-up period; Kingston 
continued to use its fluoride-deficient water without treatment (33). 
The investigators found that the rate of decayed, missing, or filled 
(DMF) teeth in children, ages 6 to 12, decreased by almost 50% in 
Newburgh but increased slightly in Kingston. 

Because subjects were not individually randomized in this study, it is 
possible that children in the treated group differed from children in the 
comparison group with respect to other risk factors for tooth decay, 
such as diet. Thus, the investigators' comparisons might have been 
confounded. Note, however, that randomization by city would not 
have reduced this possible bias in the Newburgh-Kingston study, 
because the two assigned treatment groups would be equally 
noncomparable regardless of which city was assigned fluoride 
treatment. 

Observational Studies. Unlike experiments and quasi-experiments, 
observational studies are commonly used to estimate the effects of 
exposures hypothesized to be harmful, fixed attributes (e.g., race and 
genotype), characteristics, behaviors or exposures over which the 
investigator has little or no control (e.g., weight, depression, and 
sunlight exposure), and other exposures for which manipulation or 
randomization would be unethical or infeasible. Observational studies 
are often conducted with secondary or retrospective data (instead of 
primary prospective data) and/or without following individual subjects 
for change in disease status. For example, the fluoride hypothesis 
could be tested by comparing the prevalence of decayed, missing, or 
filled teeth in children who live in areas supplied by fluoridated water 
with the corresponding prevalence in children who live in areas 
supplied by nonfluoridated water. Although such a study would be 
less expensive and easier to conduct than would the previous 
examples, there are additional methodologic problems that could lead 
to bias or misinterpretations. 



The remainder of this article is devoted to an elaboration of 
observational study designs. In "Basic Observational Designs," we 
cover the basic designs in which data on disease status, exposure 
status, and all covariates are collected at the individual level; that is, 
the unit of analysis is the individual (or body part, such as the tooth or 
eye). In "Ecological Designs," we cover designs in which the unit of 
analysis is a group of individuals, such that information is missing on 
the joint distributions of key variables at the individual level. 

Basic Observational Designs 

Frequently, hypotheses about environmental risk factors for disease 
are derived from animal studies, clinical observations, reports of 
disease clusters, descriptive findings from population surveillance 
systems, and various types of exploratory studies (e.g., case series, 
mapping studies, and migrant studies). Formal testing of these 
hypotheses most often proceeds by conducting observational studies 
of the types described in this section. 

Basic designs in epidemiology may be classified according to two 
dimensions: type of study population and type of sampling scheme 
(34). First, the study population is longitudinal, involving the detection 
of incident events during a follow-up period; or it is cross-sectional, 
involving the detection of prevalent cases at one time. Second, the 
sampling strategy involves complete selection of the entire population 
from which study cases are identified, or it involves incomplete or 
case-control sampling of a fraction (<100%) of the noncases in the 
population from which study cases are identified. Case-control 
sampling, therefore, implies stratification on disease status in the 
selection process. Combining these two dimensions results in four 
basic designs: longitudinal studies of a complete population (cohort 
studies); cross-sectional studies of a complete population (cross-
sectional studies); longitudinal studies with case-control sampling 
(case-control studies with incident cases); and cross-sectional studies 
with case-control sampling (case-control studies with prevalent 
cases). In addition to these basic designs, we also discuss new 
developments in genetic studies for assessing gene-environment 
interactions (see "Genetic Studies"). 

Cohort Study 



A cohort or follow-up study is a longitudinal design of a specified 
population in which exposure status is measured for all subjects at 
the start of follow-up (baseline) and possibly during follow-up. The 
entire study population--typically persons who are free of the index 
disease at baseline--are followed for detection of all incident cases or 
deaths of interest. Thus, the base population in this design is identical 
to the study population. 

Cohort studies may be entirely prospective, meaning exposure status 
and disease occurrence are ascertained for the period during which 
the study is conducted, or they may be entirely retrospective 
(historical), meaning exposure status and disease occurrence are 
ascertained for a period before the study begins. Retrospective data 
are usually obtained from the subject's recall of past events or from 
abstracted records. Many cohort studies combine both data-collection 
procedures; e.g., the follow-up period for detecting the disease starts 
before the study and continues throughout the study period. Although 
retrospective studies are generally much less expensive and time-
consuming, prospective studies can be designed to collect more 
appropriate, complete, and accurate data. 

Example. Suppose we want to estimate the possible effect of 
prenatal exposure to passive smoke (not maternal smoking) on the 
risk of lower respiratory disease during the first 3 years of life. We 
might identify a large group of nonsmoking pregnant women and 
interview them just before delivery about their exposure to passive 
smoke during pregnancy and about other risk factors for the disease. 
The assessment of passive smoking would involve measuring 
exposure at home, work, and elsewhere with an attempt to quantify 
the number of smokers, cigarettes, and/or exposure time for each 
woman by trimester. Then each neonate would be followed by 
periodic examinations and parental reports of symptoms to his or her 
third birthday. By establishing a standard set of criteria for diagnosing 
new cases of lower respiratory disease and by categorizing the 
passive-smoke exposure into two or more categories, we can 
compare the 3-year risk of disease by exposure group. In this 
hypothetical example, the experience of each subject contributes to a 
single exposure group. Since subjects are not randomized to 
exposure groups, it is important to control analytically for other risk 
factors that are associated with exposure status in the study (base) 



population. For example, we might want to control for the child's 
exposure to passive smoke at home; if other family members smoked 
during the mother's pregnancy, they are also likely to have smoked 
during the child's first 3 years of life. On the other hand, we should 
probably not control for birth weight even if it is a risk factor for the 
disease, because prenatal smoking affects birth weight. Thus, 
provided low birth weight is a risk factor for lower respiratory disease 
during the first three years of life, low birth weight is likely to be an 
intermediate variable in the causal pathway between prenatal 
exposure to passive smoke and the disease. 

Strengths of a Cohort Design. The prospective cohort study is the 
observational design that is most similar to an experiment. The major 
strengths of this design derive from the fact that disease occurs and 
is detected after subjects are selected and after exposure status is 
measured. Thus, we can usually be confident that the exposure 
preceded the disease (i.e., there is no temporal ambiguity). This 
feature is particularly important when disease can also influence 
exposure status (e.g., persons with asthma moving to drier, less-
polluted areas). Well-designed retrospective cohort studies also lack 
temporal ambiguity of cause and effect. 

Another major strength of the cohort design is the usual lack of 
selection bias that threatens other basic designs (2). Disease status 
cannot, in principle, influence the selection of subjects except, 
perhaps, in poorly designed retrospective cohort studies. Sometimes 
researchers, ignoring this principle, propose random sampling to 
reduce bias. In fact, random sampling in a cohort study, unlike 
random assignment, does not prevent or necessarily reduce 
epidemiologic bias in effect estimation; i.e., random sampling 
generally does not improve comparability between exposure groups. 
It does, however, make the study population representative of a 
larger ,well-defined source population (sampling frame), which may 
make one's findings more generalizable. For example, suppose we 
initiated a prospective cohort study of lung cancer by mailing 
questionnaires to a random sample of 500,000 adults living in a given 
region served by population cancer registries. The questionnaire 
would request information on previous cancer diagnoses, exposure 
variables, and other risk factors for lung cancer. Following responses 
by 100,000 selected residents, the cancer registries would be used to 



identify all new cases of lung cancer diagnosed among respondents 
during the subsequent 5 years. Even though the 100,000 
respondents will differ in many ways from the 400,000 
nonrespondents, these differences will not cause epidemiologic bias 
in effect estimation. Nevertheless, the exposure effect observed for 
respondents (the base population) may not be generalizable to the 
population of nonrespondents. One possible reason for this lack of 
generalizability is that respondents and nonrespondents differ on the 
joint distribution of one or more effect modifiers. 

As we will see in the next two sections, the same level of 
nonresponse in a cross-sectional or case-control study that we 
assumed in the above cohort example might seriously threaten the 
validity of effect estimation. Thus, unlike cohort (or randomized) 
studies, nonresponse in other basic designs can easily introduce 
selection bias because study cases have already occurred when 
subjects are selected. As noted in "Sources of Epidemiologic Bias," 
selection bias is most likely to be problematic when the investigator 
does not identify the base population from which study cases arose 
(as in cross-sectional studies and certain case-control studies). 

Weaknesses of a Cohort Design. A potential weakness of cohort 
designs is the loss of subjects to follow-up due to death from other 
diseases, lack of participation, or migration. Unlike subject selection, 
loss to follow-up can easily bias effect estimation if attrition is 
associated with disease risk to a different extent for exposed and 
unexposed groups (2,35). Unfortunately, we can neither rule out nor 
confirm such bias by comparing lost subjects and followed subjects 
with respect to baseline characteristics (including risk factors) (35). At 
best, baseline similarities between lost and followed subjects only 
suggest that loss to follow-up is probably not a major threat to validity, 
especially if the attrition rate is low. 

Perhaps the major practical limitation of a cohort design, especially 
prospective studies, is its inefficiency for studying rare outcome 
events, which is what most diseases are in nonclinical populations. 
Because exposure status and other covariates must be observed at 
the start of follow-up in the entire study population, a rare disease 
would mean that most subjects will remain noncases. Comparing a 
small number of cases with a large number of noncases is statistically 



and economically inefficient because of the diminishing marginal 
return from additional noncases. Assuming a fixed sample size, 
therefore, it is more efficient to study a disease with an expected risk 
of 30% than to study a disease with an expected risk of 1%; the 
former will result in more precision and power for estimating and 
testing the exposure effect. Moreover, substantial increases in the 
sample size to compensate for too few expected cases is often 
impractical or impossible, especially when the size of the exposed 
population available for study is limited. 

Time-Dependent Exposures. In conventional analyses of cohort-
study data, exposure status and other covariates are usually treated 
as fixed variables measured at baseline. Yet the instantaneous and 
cumulative level of most environmental exposures changes during 
the follow-up period. Consequently, the greater the change and the 
longer the follow-up, the less appropriate are conventional methods 
of analysis. A common solution to this problem is to measure average 
exposure, duration of exposure, or cumulative exposure before and 
during the follow-up period; then these variables are analyzed like the 
simple baseline exposure variable, as possible (fixed) predictors of 
disease occurrence. Unfortunately, this approach also has 
methodologic problems: a) if the follow-up period for detecting 
disease overlaps the period during which exposure change is 
measured, the temporal relationship of an exposure-disease 
association is ambiguous. We may not know whether exposure 
changes preceded disease occurrence or disease preceded changes 
in exposure level. b) If the levels of exposure and/or other risk factors 
change over time, the associations between the exposure and these 
covariates also can change; then the amount of confounding of the 
estimated exposure effect will change. The analytic method described 
above, therefore, will not, in general, eliminate confounding due to 
these risk factors (even when there is no misclassification). c) When 
an extraneous risk factor affects subsequent exposure status and is 
affected by previous exposure status, that risk factor can be a 
confounder and an intermediate variable simultaneously (36,37). For 
example, suppose we want to estimate the effect of exposure 
duration on mortality from a specific disease. If early symptoms of the 
disease lead to termination of exposure, then early symptoms, which 
is a risk factor for disease mortality, is both a confounder and an 
intermediate variable of the exposure-disease relationship. 



Consequently, standard methods of analysis will generally lead to a 
biased estimate of the exposure effect, whether or not one adjusts for 
the risk factor. 

A statistical solution to the above problems was recently developed 
by Robins (36,37) who treats the prolonged or changing predictor 
variables as time-dependent covariates for which repeated 
observations are collected during the follow-up. The method involves 
estimating causal parameters for hypothetical exposure experiences 
of the study population (15). For example, we might want to compare 
the outcome risk for all subjects had they remained exposed 
throughout follow-up with these subjects had they remained 
unexposed, controlling for confounders at the start of each interval 
(time stratum). 

Cross-Sectional Study 

A cross-sectional design involves a single ascertainment of disease 
prevalence in a study population that is usually sampled randomly 
from a single source population. In this sense, the source population 
is that larger group of individuals who are designated by the 
investigator as being eligible for inclusion in the study. Generally, in a 
cross-sectional study, we do not know how long prevalent (existing) 
cases have had the disease, nor can we identify the base population 
(at risk) from which the study cases arose. Exposure data on time-
dependent variables are usually measured retrospectively to allow for 
expected variations in disease latency (before detection) and duration 
of expression (after detection). 

The statistical analysis of cross-sectional data typically resembles the 
analysis of cohort or case-control data. Instead of comparing disease 
risks for exposed and unexposed groups, we compare disease 
prevalences (P), as in a cohort study, or we compare the prevalence 
odds (P/(1-P)), as in a case-control study (see "Case-Control Study"). 
Under certain conditions or assumptions, the prevalence ratio or 
prevalence odds ratio is approximately equal to the ratio of incidence 
rates or risks (i.e., the causal parameter of interest) (2,38). For 
example, disease prevalence in a population is a function of both 
incidence and the duration of disease. If the mean duration of disease 
(from onset to recovery or death) is known to be identical for exposed 



and unexposed cases, we can be more confident that the prevalence 
odds ratio approximates the incidence rate ratio. 

Example. Suppose we want to estimate the possible effect of 
prenatal exposure to passive smoke (as in "Cohort Study") on birth 
weight, categorized for convenience into low (<2500 g) and normal. 
We identify all live births delivered in one hospital during a given 
period (the source population); then we take a random or quasi-
random sample (e.g., every third birth). By obtaining exposure data 
retrospectively from mothers near the time of delivery, we can 
compare the prevalence of low birth weight for infants prenatally 
exposed and unexposed to passive smoke, controlling analytically for 
confounders (e.g., maternal age, maternal smoking, and prenatal 
care). 

Even though births may be regarded as incident events, the infant's 
weight at birth is a prevalence measure, because we do not know the 
size of the base population. The causal parameter of interest is a 
hypothetical comparison of retarded development between fetuses 
exposed to passive smoke and those fetuses had they not been 
exposed. Not only can we not observe this hypothetical condition of 
exposed fetuses being unexposed, but we do not (or cannot) follow 
the base population; the prevalence of low birth weight is simply the 
end result of that hypothetical follow-up. 

Strengths of a Cross-Sectional Design. Because there is no follow-
up, cross-sectional studies are less time-consuming and costly than 
prospective cohort studies. It is also feasible to examine many 
exposures and diseases in the same study, which makes this design 
useful for screening new hypotheses. In addition to causal inference, 
cross-sectional studies are important descriptively in health 
administration, planning, and policy analysis; information on disease 
prevalence is often required to assess the need and demand for 
health services and to evaluate intervention programs in specific 
target populations (2). 

Weaknesses of a Cross-Sectional Design. A major methodologic 
limitation of many cross-sectional studies for making causal 
inferences is temporal ambiguity of cause and effect. Because we 
usually do not know the duration of the disease in prevalent cases 



and because exposure status is measured at the same time as 
disease status, often we cannot determine that exposure (or a certain 
accumulation of exposure) preceded disease occurrence. One 
approach for minimizing this problem is to collect retrospective 
exposure data and information on previous medical diagnoses and 
the onset of symptoms associated with the disease under study. Not 
only may this approach be very uninformative for temporally linking 
exposure and disease, but it is also likely to worsen another potential 
problem, measurement error. Reliance on retrospective data 
increases the likelihood and magnitude of measurement errors, which 
generally leads to information bias. Furthermore, because all data are 
collected after disease has occurred, it is very possible for the error in 
measuring one variable to be related to the other variable (differential 
misclassification) or to error in measuring the other variable 
(correlated errors). Such possibilities are particularly likely in survey 
research and make potential information bias severe and 
unpredictable. 

When cross-sectional studies are conducted without random 
sampling, they offer little opportunity for making statistical inferences 
about descriptive, population-specific parameters, e.g., the 
prevalence of a disease in a specified source population (28). The 
lack of random sampling may also worsen the potential problem of 
selection bias in effect estimation, which would be difficult to rule out 
a priori or to correct in the analysis. Even with random sampling, 
however, disease status or exposure status can influence the 
selection of subjects differentially by category of the other variable. 
For example, exposed cases may be less likely than others to be 
selected for study, perhaps because new exposed cases are less 
likely to survive than new unexposed cases (i.e., selective survival) or 
because exposed cases are less likely to enter the specified source 
population such as a hospital (i.e., Berkson's bias) (2). Similarly, 
selection bias can result from the differential participation of selected 
subjects (i.e., response bias). 

Case-Control Study 

Case-control studies are distinguished from other basic designs by 
their sampling strategy: The investigator selects only a fraction of 
noncases (controls) from the population from which the cases were 



identified (2,3,5,34,39). Sometimes this population is not the true 
(primary) base population (out of necessity or convenience), and 
occasionally controls are assembled without regard for the 
identification of cases. The design may be longitudinal, involving 
incident cases, or cross-sectional, involving prevalent cases. In both 
types, the investigator establishes the ratio of controls to cases, 
which does not depend directly on the frequency of disease in the 
population. As in cross-sectional studies, exposure data on time-
dependent variables are generally measured retrospectively to 
account for expected variations in disease latency. 

Estimation of Effect. Unless the crude disease rate or the size of the 
base population is known, we cannot estimate the risk or rate of the 
disease in the exposed and unexposed populations. Nevertheless, 
we can estimate the effect of the exposure on disease by calculating 
the exposure odds ratio, which computationally is similar to the 
prevalence odds ratio in a cross-sectional study (2,3,19,20). For this 
estimation of effect to be valid, however, the controls must be 
representative of the base population that gave rise to the study 
cases. In this context, representative means having a similar 
distribution on other disease risk factors and indicators of disease 
detection. The best method for making the controls representative in 
this way is to sample them randomly (with or without matching) from 
the base population (see below). 

Matching. As in any observational study, the investigator should 
control analytically for confounders by stratification or model fitting. 
Intuitively, it would appear that one method for achieving this control 
is to match controls to cases on extraneous risk factors (i.e., making 
controls similar to cases on the joint distribution of these risk factors). 
In a case-control study, however, it is not the matching alone that 
controls for the confounding effects of the matching variables; rather, 
stratification in the analysis eliminates this bias (1-6). In fact, the net 
effect of matching in case-control studies (but not in cohort studies) is 
to introduce selection bias that must be controlled in the analysis. 
Thus, if the matching is ignored in the analysis, the effect estimate 
will usually be biased (2,4,14). 

The potential advantage of matching in the selection of subjects is 
that it allows the investigator to control for confounders more 



efficiently than if matching is not used (1-6). Yet, in this regard, 
matching can be counterproductive if one matches in a case-control 
study on strong correlates of exposure in the base population that are 
not risk factors (or proxy risk factors) for the disease. This type of 
overmatching results in a decrease in statistical efficiency (i.e., less 
precision for a given number of cases and controls) (1-6). The 
conditions for overmatching, however, are very different in cohort 
studies in which unexposed subjects are matched to exposed 
subjects (40). Matching can also be economically counterproductive 
for achieving a certain minimal precision if it costs more to match than 
to increase the sample size without matching (41). 

Population-Based Case-Control Study. In a population-based or 
hybrid case-control study, controls (noncases) are sampled directly 
from the base population that gave rise to the cases (39,42). When 
this design involves the follow-up of a large dynamic population, such 
as residents of a state, identification of new cases is usually based on 
data collected through a population registry. The validity of effect 
estimation depends on the completeness and accuracy of case 
ascertainment and on careful description of the base population. 
When the design involves the follow-up of individuals in a fixed cohort 
(e.g., as a part of a clinical trial or cohort study), identification of new 
cases is done by exams, interviews, or questionnaires administered 
periodically to each individual in the cohort during the follow-up. This 
latter strategy is now called a nested case-control study but also has 
been called a synthetic case-control study (43). 

There are three alternative methods for selecting controls in a 
longitudinal, population-based case-control study: a) In density 
sampling, controls are selected longitudinally throughout the follow-
up. Typically, they are individually matched to cases on time of each 
case's diagnosis or identification and possibly other factors; i.e., each 
control is known to be at risk (disease-free) at the time its matched 
case was first identified as diseased. An advantage of time matching 
is that exposure status is measured at about the same time for all 
subjects in each matched set (19). b) In cumulative sampling, all 
controls are selected at the end of the follow-up period during which 
cases are identified. Both cumulative- and density-sampling methods 
can be used even when controls are not selected directly from the 
base population. c) In case-base or case-cohort sampling, all controls 



are selected from the fixed base population at the start of the follow-
up (42,44,45). An advantage of this method is that one control group 
can be used to study multiple diseases, provided that prevalent cases 
of each disease are excluded from the analyses involving that 
disease. In both case-base and density sampling, it is possible for a 
selected control to subsequently develop the disease and become a 
case in the study. 

Example. Suppose we want to estimate the possible effect of 
prenatal exposure to passive smoke (as in previous examples) on the 
risk of sudden infant death syndrome (SIDS). Using hospital records 
and birth certificate information, we identify a large number of live 
births occurring in a given region during a certain period. Then this 
base population is followed prospectively, using hospital records 
and/or a population registry to identify all infant deaths. For each 
diagnosed and confirmed case of SIDS, we randomly select two live 
controls matched to the case on age, race, and date of the case's 
death; thus, controls are density sampled from the follow-up 
experience (risk set) of the base population of live births. As soon as 
possible after case detection, we interview the mothers of all subjects 
to collect data on prenatal exposure to passive smoke and other 
covariates. 

Proportional (Case-Control) Study. A proportional study is a 
special type of case-control study in which selected controls have 
developed or died from diseases other than the index disease under 
study (2). By definition, therefore, this is not a population-based 
design, since controls (especially deaths) may not be representative 
of the base population from which study cases arose. In a 
proportional morbidity study, both cases and controls are selected 
from a clinical population such as a hospital, clinic, physician's 
practice, or screening program. Controls are selected because they 
have other conditions or symptoms; thus, and they are likely to differ 
from the base population of cases in ways that affect disease 
occurrence or detection. This situation will usually occur when the 
exposure is a risk factor for those comparison diseases making up 
the control group. For example, we would obtain a severely biased 
estimate of the smoking effect in a hospital-based, case-control study 
if controls were selected from emphysema patients because smoking 
is a strong risk factor for emphysema. 



Deaths comprise the entire population of a proportional mortality ratio 
(PMR) study. A group of deaths from the index disease (cases) is 
compared with a group of deaths from other diseases that might 
include selected comparison disease(s) or all other causes of death. 
Typically, all study deaths are identified retrospectively from the 
follow-up of a single population, such as persons living in a certain 
region or employed by a certain company during a given period. 
Although study deaths are incident events often identified from a 
defined base population, the outcome variable in this design is 
prevalence of disease at death; we do not have the proper 
denominator to estimate the disease-specific mortality rate in any 
(base) population. Furthermore, exposure data are not obtained for 
the base population but for study deaths only. 

In the conventional proportional mortality study, comparison deaths 
are all other causes of death occurring in the population. The 
traditional method of analysis is to compute the PMR, which is the 
proportion of exposed deaths resulting from the index disease divided 
by the proportion of unexposed deaths resulting from the index 
disease (6). Alternatively, the data are analyzed as in a case-control 
study; the researcher computes the mortality odds ratio (46,47). An 
important advantage of the alternative approach is that the 
comparison (control) group might be selected to include only those 
diseases thought to be unrelated to exposure status. This design 
strategy, which also should be used in a proportional morbidity study, 
can help reduce selection bias by making the comparison group more 
representative of the base population. Another advantage is that it 
allows use of the many analytic techniques developed for case-
control studies (48,49). 

Strengths of a Case-Control Design. The major advantage of the 
case-control design over other basic designs is its efficiency for 
studying rare diseases, especially diseases with long latent periods. 
A greater proportion of study costs for collecting exposure and 
covariate data can be devoted to cases rather than expending most 
available resources on noncases. Thus, given a fixed sample size, 
case-control sampling in a study of a rare disease enhances the 
precision and power for estimating and testing the exposure effect. In 
addition, some case-control studies, particularly proportional mortality 



designs, tend to be relatively inexpensive and feasible because they 
can be based on readily available data sources. 

Weaknesses of a Case-Control Design. A key issue in the design 
of case-control studies is the method and procedures for selecting 
controls. Ideally, we would like to make each study population-based, 
such that every new case occurrence in a well-defined base 
population is immediately identified by the investigators and controls 
are sampled randomly from the base population. In practice, 
however, this goal is not so easily accomplished, especially when the 
base is a large, dynamic population that cannot be examined 
periodically. Even population surveillance and registry systems, when 
they exist, are likely to be very incomplete for many diseases, such 
as prostate cancer, Alzheimer's disease, and ischemic heart disease. 
If exposed cases are more likely or less likely to be detected or 
reported than unexposed cases, the resulting effect estimate will be 
biased. In a cohort study, this detection problem would manifest as 
differential disease misclassification bias; but in a case-control study, 
the detection problem produces a form of selection bias that might 
involve no disease misclassification in the total sample and, 
therefore, cannot be corrected after subject selection (50). To prevent 
such detection bias, the investigator might select controls who, 
purportedly, underwent the same degree of medical surveillance as 
did study cases (51) (e.g., persons screened for the disease or 
patients treated for other related conditions). Unfortunately, this 
approach could introduce another problem by selecting for the control 
group individuals with other exposure-related conditions (see the 
discussion of proportional morbidity studies). The end result might be, 
for example, to overcompensate for potential detection bias, 
producing net bias in the opposite direction. In general, in the 
absence of perfect population-based methods, investigators must 
select controls to reflect the expected magnitudes of various potential 
selection problems. 

When there is relatively little variability of exposure in the base 
population, we expect imprecise estimation of the exposure effect, 
even if the exposure is a strong risk factor for the disease. Although 
such inefficiency is usually quite apparent in cohort studies, it may not 
be so apparent in case-control studies, especially when the 
investigator does not know the exposure distribution in the base 



population. For example, if environmental exposure levels are high 
throughout the region of the base population, a comparison of cases 
and controls would result in an unstable estimate of effect and low 
power. As in cohort studies, the problem is not one of bias. Limited 
variability of exposure is likely to occur when exposure status for 
individual subjects is measured ecologically by assigning to each 
subject the exposure level observed for the area in which that subject 
lives or works. Other problems accompanying ecologic measurement 
are discussed in "Ecologic Designs." 

Two-Stage Designs. Just as cohort studies are inefficient for 
studying rare diseases, case-control studies are inefficient for 
studying rare exposures. When both disease and exposure are rare, 
therefore, any basic design might require a very large sample size to 
ensure adequate power. One solution to this problem is a two-stage 
design: stage 1 is a basic design in which data are collected on 
exposure and disease variables only; in stage 2, covariate data and 
possibly more refined exposure data (with less measurement error) 
are collected on separate random samples of exposed cases, 
exposed noncases, unexposed cases, and unexposed noncases, all 
of which are identified from stage 1 results (52,53). Sampling 
fractions for stage 2 are set larger for those exposure-disease groups 
that contain fewer subjects in stage 1. Thus, the investigator can 
obtain approximately equal numbers of the four exposure-disease 
groups in stage 2. Stage 1 results are used to estimate the crude 
(unadjusted) exposure effect, and stage 2 results are used to 
estimate the effect adjusted for covariates and possibly a more 
refined exposure effect. The analysis of stage 2 data considers the 
sampling fractions (52-56). The two-stage design is also 
advantageous when the cost of obtaining covariate data is large 
relative to the cost of obtaining exposure and disease data or when 
covariate data are missing on a majority of subjects (52,54). 

Case-Crossover Design. A standard crossover design is an 
experiment or quasiexperiment in which each subject receives both 
the experimental and control treatments at different times (i.e., each 
subject serves as his or her own control) (57). Such designs are 
seldom used in environmental epidemiology because manipulation of 
treatment status (with or without randomization) is usually unethical 
or infeasible and because the outcome is usually a rare event. 



Recently, Maclure (58) proposed an observational analogue of the 
crossover study called the case-crossover design, which may be 
regarded as a special type of pairwise-matched, case-control study. 
This type of design can be used to estimate the possible transient 
effect of a brief exposure (e.g., coffee drinking) on the subsequent 
occurrence of a rare acute-onset disease (e.g., myocardial infarction) 
that is hypothesized to occur within a short time after exposure (i.e., 
during the effect period). All subjects are newly detected cases that 
serve as their own controls. That is, for each case, the observed odds 
of being exposed during the effect period (e.g., one hour before 
disease onset) is compared with the expected odds of being exposed 
during any random period of the same duration (assuming no 
exposure effect). The expected exposure odds is estimated from the 
subject's report of his usual exposure frequency before disease 
occurrence. For example, if a person drinks coffee twice each day 
and the effect period is 1 hr, the expected odds of exposure during 
any 1-hr period is 1/11. Thus, we would expect that, for every 12 
cases who drank coffee twice each day, one case would have 
occurred by chance within 1 hr of exposure. Maclure recommends 
using standard methods of matched analysis for person-time (cohort) 
data to combine data from all cases; however, this approach needs 
further development to handle the temporal autocorrelation of 
outcome status (i.e., a case is either exposed during the effect period 
or unexposed, but it cannot be both). Although the case-crossover 
design has not yet been used to examine the possible short-term 
effect of an environmental exposure, this type of study is feasible if 
we can measure such exposures. 

Genetic Study 

The study of variation among individuals or groups in their sensitivity 
to environmental agents is one of the aims of environmental 
epidemiology. Such variation might be due to differences in host 
characteristics, including genetic factors, or to interactions with other 
exposures. A complete survey of the methods used to study the 
genetic determinants of disease would be beyond the scope of this 
report; instead, we will focus on the approaches that might be used to 
address the issue of gene-environment interactions. 



Three basic types of information might shed light on the genetic 
component of such interactions: a classification of the subjects' 
genotypes at a major locus for disease susceptibility; some 
observable host characteristic (phenotype) that is genetically 
determined and linked with the genotype that was responsible for 
sensitivity; or family history as a surrogate for genetic (or shared 
environmental) influences. The choice of study design will depend 
upon which of these is sought. 

The first is the most powerful approach, and its feasibility will grow as 
more and more genes are identified and assays for them become 
available. If the genotype is observable, it can be considered simply 
another risk factor and any of the basic design and analysis 
strategies used in epidemiology are applicable. For example, 
Caporaso et al. (59) reported a case-control study of lung cancer, in 
which the rate of metabolism of the antihypertensive drug 
debrizoquine was taken as a phenotypic marker for a gene in the 
cytochrome P450 system that is responsible for metabolism of 
carcinogens. It was shown that intermediate and high metabolizers 
were at higher risk of lung cancer overall and that there was an 
interaction between metabolic rate and exposure to occupational 
carcinogens and smoking. In this example, the genotype was not 
observed directly but inferred from the phenotype; but recent 
advances in molecular genetics, such as the use of restriction 
fragment length polymorphism, are making direct observation 
increasingly feasible. 

Identifying host characteristics that interact with environmental 
exposures can be done in essentially the same way. A familiar 
example might be skin color as a marker for sensitivity to sunlight in 
the production of melanoma. No extensions of standard 
epidemiologic methods would be needed to address this question. 
The only subtlety in this case arises when the gene determining the 
host characteristic is not the disease susceptibility locus but only 
linked to it (i.e., nearby on the same chromosome). A particular 
marker allele might be associated with the disease in one family and 
a different allele in another family; but in both families, the marker and 
the disease would be inherited together. This possibility requires 
family data and the techniques of linkage analysis. To date, such 
analyses have been applied only to the study of genetic effects 



without reference to the environmental covariates, but statistical 
techniques that would assess such combined effects recently have 
become available (60). 

Before trying to identify a specific major gene that is related to 
sensitivity to environmental exposures, one should assess whether 
there is any evidence that such sensitivity has a genetic basis. This 
also requires collection of family data, but unlike the standard 
analyses aimed at examining the main effect of genetics, one would 
also want to examine interactions between family history and 
environmental exposures. Geneticists commonly assemble a small 
number of very large pedigrees, sometimes selected to maximize the 
chances that a major gene is operating in the families, and subject 
them to segregation analysis to study the mode of inheritance. Again, 
these analyses seldom account for environmental covariates and 
interactions, although such methods are now available. In contrast, 
epidemiologists begin with a large population-based series of cases 
and controls and restrict attention to the first- and sometimes second-
degree family members. Their analyses usually are limited to a 
simple family history covariate (e.g., presence of an affected member, 
number of affected members, etc.) in standard multivariate risk-factor 
models, possibly but seldom including interactions with environmental 
covariates. Susser and Susser (61) have discussed two basic 
approaches to such data: in the case-control approach, cases are 
compared with controls in terms of their family histories; in the cohort 
approach, the incidence of disease in the exposed (case) families is 
compared with the incidence in unexposed (control) families. Either 
approach could easily be extended to incorporate environmental 
covariates and their interactions with family history. The only 
difference is that the cohort approach requires covariate data on all of 
the family members, whereas the case-control approach requires 
data only on the originally sampled cases and controls. Clearly, the 
cohort approach is more informative, but the conditions under which 
the additional effort warrants the gain in information about gene-
environment interactions have not been investigated. 

The two major design issues to be addressed in such studies are the 
method of ascertainment of families and the information to be 
collected on family members. The former has been discussed at 
great length in the genetics literature. The basic problem is that if 



families are ascertained through affected probands, families with 
multiple cases will tend to be overrepresented. Therefore, various 
corrections for ascertainment are applied in the standard methods of 
genetic analysis. The relevance of these approaches to the 
epidemiologic designs for gene-environment interactions requires 
further research. Often, only very limited information is collected 
about family history in epidemiologic studies. The minimal information 
should be an enumeration of all affected family members together 
with the sex and age of each family member at risk; as discussed 
above, information on major risk factors for all family members at risk 
may also be desirable. Because larger and older families are likely to 
have more familial cases, the presence or number of familial cases is 
not suitable as a family history covariate. Moreover, expressing the 
number affected as a proportion does not solve the problem because 
multiple cases in large families are more informative than single 
cases in small families. A more appropriate comparison is between 
the observed number of familial cases and the expected number 
based on the person-time at risk, in which the comparison is adjusted 
for age, sex, and other important risk factors (62). 

Ecologic Designs 

An ecologic or aggregate study is one in which exposure levels of 
individuals are not linked to disease occurrence of those individuals. 
The net result is that the unit of statistical analysis is usually the 
group, typically persons living in a geographic area such as a census 
tract, county, or state. For each group or region, therefore, we know 
the average exposure level or distribution and the disease rate, but 
we do not know the joint distribution of these two variables. Given a 
dichotomous exposure, for example, we would not know the numbers 
of exposed and unexposed cases in each group. Thus, we cannot 
estimate the exposure effect directly by comparing the disease rate 
for exposed and unexposed populations. 

Ecologic designs are therefore incomplete (2) in the sense that they 
lack certain information ordinarily contained in the basic designs. As 
noted in "Problems in Environmental Epidemiology," the primary 
reason for this missing information in environmental epidemiology is 
our inability or lack of resources to accurately measure environmental 
exposures in large numbers of individuals. Thus, the widespread use 



of ecologic designs in environmental epidemiology reflects a 
fundamental problem of exposure measurement. In addition, ecologic 
studies represent an inexpensive design option for linking available 
data sets or record systems, even when exposures are measured at 
the individual level. The appeal of this alternative is that aggregate 
summaries of many exposures, including sociodemographic and 
other census variables, are often available for the same regions that 
are used to summarize morbidity and mortality data. 

With the inclusion of covariate data in an ecologic study, the analysis 
may be only partly ecologic. This condition occurs when the joint 
distribution of two or more, but not all, variables is known within 
groups. For example, suppose we want to examine the possible 
effect of radon exposure on lung cancer incidence, controlling for age 
(the covariate). Although we might know the age distribution of all 
new cases and all persons at risk within each county (from tumor 
registry and census data), we would usually not know the within-
county association between radon exposure and the other two 
variables. Sometimes data sets like this are analyzed with the 
individual as the unit of analysis, where each individual is assigned 
the average radon exposure level that was measured for the region in 
which he or she lives. Such ecologic measurement of exposure 
means that there is likely to be substantial error in measuring the 
individual's exposure to radon, which could result in information bias 
of effect estimation. 

Types of Ecologic Studies 

Ecologic studies may be classified into five design types that differ in 
several ways, including methods of subject selection and methods of 
analysis (2,63). 

Exploratory Studies. In exploratory ecologic studies, we compare 
the rate of disease among many contiguous regions during the same 
period, or we compare the rate over time in one region. In neither 
approach are exposures to specific environmental factors measured 
(for individuals or groups). The purpose is to search for spatial or 
temporal patterns that might suggest an environmental etiology or 
more specific etiologic hypotheses. 



The simplest type of exploratory study of spatial patterns is a 
graphical comparison of relative rates across all regions (i.e., 
mapping study), possibly accompanied by a statistical test for the null 
hypothesis of no geographic clustering (64). In mapping studies, 
however, a simple comparison of estimated rates across regions is 
often complicated by two statistical issues. First, regions with smaller 
numbers of observed cases show greater variability in the estimated 
rate; thus, the most extreme rates tend to be estimated for those 
regions with the fewest cases. Second, nearby regions tend to have 
more similar rates than do distant regions (i.e., positive 
autocorrelation). A statistical method for dealing with both 
complications involves empirical Baye' estimation of rates using an 
autoregressive spatial model (65). 

In certain exploratory studies of spatial patterns, regions are 
characterized in terms of general ecologic indicators such as degree 
of urbanization (urban versus rural), degree of industrialization 
(agricultural versus nonagricultural), population density, 
socioeconomic status, and ethnic diversity. The analysis of these 
data usually involves comparisons of regions grouped by one or more 
ecologic indicators. This approach resembles the statistical methods 
used in multiple-group studies (see "Interpretation of Results"). 

An exploratory ecologic study was conducted by Mahoney et al. (66), 
who compared age-standardized mortality ratios for cancers, by sex, 
among all cities and towns in New York State (exclusive of New York 
City) between 1978 and 1982. By grouping these regions by quintile 
of population density, they examined the associations between 
density and deaths from all cancer sites and selected sites, by sex. 
They found linear associations between increasing population density 
and total cancer mortality in both men and women. Because 
population density may reflect various risk factors for different 
cancers, the authors acknowledge that their findings are consistent 
with several alternative explanations. 

An exploratory study of temporal patterns is generally done by 
comparing disease rates for a geographically defined population over 
a period of at least 20 years. A common statistical or graphical 
approach for analyzing such longitudinal data is cohort analysis (not 
to be confused with the analysis of data from a cohort study) (2). The 



objective of this approach is to estimate the separate effects of three 
time-related variables on disease occurrence: age, period (calendar 
time), and birth cohort (year of birth). Because of the linear 
dependency of these three variables, there is an inherent statistical 
limitation (identification problem) with the interpretation of cohort-
analysis results. The problem is that each data set has alternative 
explanations with respect to the combination of age, period, and 
cohort effects. The only way to decide which interpretation should be 
accepted is to consider the findings in light of other (prior) knowledge 
of the disease and its determinants. 

A cohort analysis was conducted by Lee et al. (67) on melanoma 
mortality among white males living in the United States between 1951 
and 1975. They concluded that the apparent increase in the 
melanoma mortality rate during that period was due primarily to a 
cohort effect. That is, persons born in more recent years carried with 
them throughout their lives a higher mortality rate than did persons 
born earlier. In a subsequent review paper, Lee (68) speculates that 
the cohort effect might reflect the impact of changes in a major risk 
factor operating during youth, such as sunlight exposure or burning. 

Space-Time Cluster Study. Space-time clustering refers to the 
interaction between place and time of disease occurrence, such that 
cases that occur close in space also occur close in time (2). Evidence 
of space-time clustering may suggest person-to-person transmission 
of an infectious agent or the effects of point-source exposures, 
depending on the disease and the cluster pattern. The analytic 
search for space-time clusters requires special statistical techniques 
that may or may not incorporate information on the base population 
and covariates (69,70). Although the unit of analysis for these 
methods is usually the individual, space-time cluster studies are 
classified here with ecologic designs because closeness in space and 
time is a proxy measure for environmental exposures--or at least the 
opportunity for exposures. Thus, use of place and time information is 
analogous to use of spatial or temporal indicators in the exploratory 
study. 

Space-time cluster analyses may be used when members of a 
community perceive a cluster or excess number of cases of one or 
more diseases in their area. This activity is often motivated by the 



suspicion that the apparent cluster is caused by a specific 
environmental exposure, such as chemical waste, pesticides, or 
electromagnetic fields. When investigation begins, the first steps are 
to verify the diagnoses of all reported cases and identify any 
additional cases in the cluster area, which must be defined. In 
addition to space-time cluster analyses, the investigators will probably 
want to compare the disease rate in the cluster-area population with 
the rate in another population thought to be unexposed (retrospective 
cohort study), and they may conduct a population-based case-control 
study to identify risk factors for the disease. 

Multiple-Group Study. In a multiple-group ecologic study, we assess 
the ecologic association between average exposure level or 
prevalence and the rate of disease among many groups or regions. 
This is the most frequently used ecologic design in environmental 
epidemiology. Studies are usually conducted by linking separate 
sources of data. For example, census and tumor-registry data might 
be combined to estimate cancer rates for all counties in a state; other 
state records or surveys might be used to estimate average exposure 
levels by county. Statistical methods for estimating exposure effects 
in multiple-group studies are discussed in "Interpretation of Results" 
and by Prentice and Thomas in this issue. 

Hatch and Susser (71) conducted a multiple-group ecologic study to 
examine the association between background gamma radiation and 
childhood cancers between 1975 and 1985 in the region surrounding 
the Three Mile Island nuclear plant. Using data from a 1976 aerial 
survey, they estimated the average radiation level for each of 69 
tracts in the study region. The results of their analyses showed a 
positive association between radiation level and the incidence of 
childhood cancers. The authors were cautious in making causal 
inferences, however, because the large effect observed for solid 
tumors, as well as leukemias, was not expected. 

Time-Trend Study. In time-trend (or time-series) studies, we assess 
the ecologic association between change in average exposure level 
or prevalence and change in disease rate in one geographically 
defined population. The assessment may be done by simple 
graphical displays or by more formal statistical techniques (72-75). 
With either approach, however, the interpretation of findings is often 



complicated by two issues. First, changes in disease classification 
and diagnostic criteria can produce very misleading results. Second, 
the latency of the disease with respect to the exposure of interest 
may be long, variable across cases, and/or unknown to the 
investigator; thus, employing an arbitrary or empirically defined lag 
between the two trends can also produce very misleading results 
(76). 

Darby and Doll (77) compared the trends of average annual absorbed 
doses of radiation fallout from weapons testing and childhood 
leukemia rates in three European countries between 1945 and 1985. 
Although the leukemia rates varied over time in each country, they 
found no convincing evidence that these changes were attributed to 
changes in fallout radiation. 

Mixed Study. The mixed ecologic design combines the basic 
features of the multiple-group study and the time-trend study. The 
objective is to assess the ecologic association between change in 
average exposure level or prevalence and change in disease rate 
among many groups. Thus, two types of comparisons are made 
simultaneously: change over time within groups and differences 
among groups. 

For example, Crawford et al. (78) evaluated the hypothesis that hard 
drinking water (i.e., water containing more calcium and magnesium 
ions) is a protective risk factor for cardiovascular disease (CVD). 
They compared the absolute change in CVD mortality rate between 
1948 and 1964, by age and sex, in 83 British towns. The towns were 
divided into three groups: a) five had experienced increases in water 
hardness; b) six had experienced decreases, and c) 72 had 
experienced little or no change in water hardness. In all sex-age 
groups, especially for men, the authors found an inverse association 
between trends in water hardness and CVD mortality. In middle-aged 
men, for example, the increase in CVD mortality was less in towns 
that made their water harder than in towns that made their water 
softer. 

Interpretation of Results 



Statistical analysis in a multiple-group study usually involves fitting 
the data to a mathematical model (see Prentice and Thomas, this 
issue). The outcome variable is a function of the disease rate in each 
group; predictors include the average exposure level or proportion 
exposed in each group plus other ecologic covariates, the effects of 
which the investigator wants to control. We show in "Control for 
Covariates" that these covariates need not be confounders (i.e., at 
the individual level within groups). 

Results of the fitted model can be used to estimate the exposure 
effect, i.e., the same causal parameter we would like to have 
estimated had the study been conducted at the individual level 
(63,79,80). For example, suppose the exposure variable is the 
proportion exposed in each group and there are no covariates. 
Assuming a linear model, we can use weighted least-squares 
regression to estimate the slope (b) and intercept (a). The predicted 
disease rate in a group that is entirely exposed is then a + b(1) = a + 
b, and the predicted rate in a group that is entirely unexposed is a + 
b(0) = a; therefore, the estimated rate ratio is (a + b)/a = 1 + b/a. It is 
important to note that this estimation procedure implies extrapolating 
the results of the model to both extreme values of the exposure 
variable, either or both of which may lie well beyond the observed 
range. It is not surprising, therefore, that different model forms can 
lead to very different estimates of effect (81). In fact, certain model 
assumptions may lead to rate-ratio estimates that are negative and 
thus meaningless. 

Ecologic Bias 

The use of ecologic data to estimate causal parameters has a major 
methodologic limitation, called the ecological fallacy (82), aggregation 
bias (83), cross-level bias (84), and ecologic bias (85,86). Ecologic 
bias refers, in general, to the failure of ecologic estimates of effect to 
reflect the true effect at the individual level. Some of this bias may 
occur in individual-level studies of the same population, but some of it 
is due specifically to the aggregation of subjects into groups. More 
importantly, the magnitude of ecologic bias is likely to be more severe 
and less predictable than is individual-level bias in estimating the 
same effect (63,81,86,87). It is very possible, for example, that an 



ecologic analysis of a (true) positive risk factor would produce an 
apparently protective effect. 

The underlying problem of ecologic bias may be regarded as a 
special form of information bias resulting from within-group 
heterogeneity of exposure status, which is not captured in the 
analysis. For example, a positive linear relationship between 
proportion exposed and disease rate does not necessarily mean that 
exposed individuals are at greater risk for the disease than are 
unexposed individuals; rather, unexposed individuals may be at 
greater risk in groups containing proportionally more exposed 
individuals. The implication of this latter explanation is that an 
individual's group affiliation has an effect on disease occurrence that 
reflects more than just the individual's exposure status. 

A mathematical understanding of ecologic bias was first provided for 
correlation coefficients by Robinson (88) and later extended to 
regression coefficients by Duncan et al. (89). Nevertheless, the 
conditions for valid ecologic estimation and the relationship between 
ecologic bias and other methodologic issues are still not well 
understood. Because the results of ecologic analyses are often used 
to influence policy decisions, as well as to make causal inferences, it 
is important for researchers to appreciate the complexities of ecologic 
inference. 

Sources of Ecologic Bias. Ecologic bias is often confused with 
confounding, perhaps because regional differences in disease rates 
can be due to variation in the distribution of extraneous risk factors 
across regions. To clarify the confusion between these two concepts, 
Greenland and Morgenstern (86,87,90) show that ecologic bias can 
arise from three different sources. 

Within-Group Confounding (At the Individual Level). The 
exposure effect may be confounded within groups (as described for 
nonecologic studies in "Sources of Epidemiologic Bias"). Thus, if the 
within-group effect is equally confounded by the same unmeasured 
risk factors in every group, we can expect the ecologic estimate of 
effect to be biased as well. In general, ecologic estimates will be 
biased in this way if the net within-group bias across groups (due to 
uncontrolled confounders) is not zero. It is possible, therefore, for 



positive confounding in certain groups to cancel negative confounding 
in other groups. 

The other two sources of ecologic bias are unique to this design and 
can be understood by considering group (or group affiliation) as a 
nominal predictor of disease occurrence at the individual level. 

Confounding by Group. Ecologic bias can occur when the disease 
rate in the unexposed population varies across groups. Since 
average exposure level also typically varies across groups, group is a 
confounder of the exposure effect at the individual level. This set of 
conditions may occur if one or more unmeasured risk factors are 
differentially distributed across groups, even if these risk factors are 
unrelated to exposure status within groups and, therefore, are not 
confounders at the individual level. 

Effect Modification by Group. Ecologic bias can also occur when 
the exposure effect varies across groups, i.e., when group modifies 
the effect of the exposure at the individual level. This condition may 
result from extraneous risk factors (effect modifiers) being 
differentially distributed across groups or by misspecification of the 
model form used to analyze the data. Ecologic bias of this type tends 
to be more severe when there is little variability in average exposure 
across groups (85), even when the effect modification is relatively 
weak and there is no confounding by group. 

Taken together, the above principles imply that there will be no 
ecologic bias if the disease rate in the unexposed population and the 
exposure effect do not vary across groups and if there is no net 
confounding within groups. Unfortunately, it is very unlikely that all of 
these conditions will be met in one ecologic study. Although small 
departures from these conditions may result in substantial bias 
(81,86), it is also possible that there will be little or no bias in certain 
studies when one or more of these conditions are not met. 

If every group were completely exposed or unexposed, there would 
be no ecologic bias attributable to confounding or effect modification 
by group. Indeed, if all covariates were measured at the individual 
level, such a study would not be an ecologic design. Thus, to reduce 
ecologic bias, we should select regions that minimize within-region 



exposure variation and maximize between-region variation (63,81). 
One strategy for achieving these goals is to choose the smallest unit 
of analysis for which required data are available (e.g., census tracts 
or blocks). Unfortunately, certain data are seldom available at this 
level (e.g., personal behaviors and biomedical factors), and there is 
no guarantee that these smaller units are more homogeneous with 
respect to exposure status. Furthermore, use of smaller groups might 
increase the problem of migration between groups (see "Other 
Methodologic Problems"). 

Control for Covariates 

In a study conducted entirely at the individual level, an extraneous 
risk factor produces bias (confounding) in effect estimation only if it is 
associated with exposure status in the base population (see "Sources 
of Epidemiologic Bias"). In a multiple-group ecologic study, however, 
an extraneous risk factor can produce ecologic bias even if it is not 
associated with exposure status within regions (at the individual level) 
(86,87,90). Such bias occurs typically because the ecologic 
association (across regions) between the exposure and risk factor 
produces confounding and/or modification of the exposure effect by 
group (see "Ecologic Bias"). Conversely, an extraneous risk factor 
that is a confounder within regions may not produce ecologic bias if 
the net within-group bias is zero (see "Ecologic Bias") or if the risk 
factor is ecologically uncorrelated with the exposure. 

One method to control for extraneous risk factors in ecologic studies 
is to include predictor terms for these risk factors in the model (e.g., 
the proportion of smokers or the mean family income in each region). 
Unfortunately, even when such covariate data are available for all 
regions, ecologic adjustment usually cannot be expected to remove 
completely the ecologic bias produced by these risk factors. In fact, it 
is possible for such ecologic adjustment to increase bias (86). 

The general conditions under which the ecologic control for 
extraneous risk factors either increases or decreases bias have not 
been delineated. Yet, under certain restrictive conditions, ecologic 
control for covariates will produce unbiased estimates of the 
exposure effect, provided there are no other sources of bias (e.g., 
outcome misclassification). If the effects of the exposure and the 



covariate on disease rate are exactly additive within every region (i.e., 
the rate difference for each variable is constant across levels of the 
other variable) and if the rate conditional on both predictors is exactly 
the same in every region, ecologic regression of disease rate on the 
mean exposure and covariate levels (i.e., multiple linear regression) 
will lead to unbiased estimates of both effects (83,84). Under these 
conditions, group affiliation does not confound or modify the exposure 
effect at the individual level. However, as shown by Greenland (81), 
relatively minor deviations from perfect additivity (linearity) can lead to 
appreciable ecologic bias because ecologic rate ratios can be 
extremely sensitive to the choice of model form, in contrast to 
individual-level estimates. Furthermore, the two conditions noted 
above are only sufficient for no ecologic bias to occur; ecologic bias 
may be absent when either or both conditions are not met. 

Richardson and Hémon (91) recently pointed out that there is another 
set of conditions for which ecologic control of covariates is possible. If 
a) the exposure and covariates are uncorrelated within regions, b) 
their effects on disease are multiplicative (i.e., the rate ratio for each 
variable is constant across levels of the other variable), and c) the 
rate conditional on both predictors is exactly the same in every 
region, then ecologic bias due to the covariates can be removed or 
largely reduced by including product terms in the linear model. Of 
course, such conditions are very difficult to verify in ecologic studies; 
if the exposure and covariates (other risk factors) are correlated 
within regions, the covariates will be confounders at the individual 
level and substantial ecologic bias can occur even with product terms 
in the model (81). 

When the data are not entirely ecologic (see "Ecologic Designs"), rate 
standardization is another method often employed to adjust for 
extraneous risk factors in ecologic studies. For example, if the age 
distribution is known for cases and for the base population in every 
region, we can mutually standardize the rate in every region to the 
age distribution of a well-defined (standard) population (5); then we 
use the standardized rates as the outcome variable in the ecologic 
analysis. Unfortunately, this method does not always reduce ecologic 
bias due to the variables for which the rates are standardized; in fact, 
the result may be to increase bias appreciably (86,92). 
Standardization can be expected to reduce ecologic bias only if all 



variables in the model (i.e., disease and all predictors) are mutually 
standardized for those other confounders (e.g., age) not included as 
predictors in the regression model. This method is often not feasible, 
for example, when the investigator does not know the age distribution 
of exposed and unexposed populations within every region. 

Other Methodologic Problems  

In addition to ecologic bias and the related difficulties of controlling for 
extraneous risk factors, there are other methodologic problems with 
ecologic analysis, a few of which are addressed below. 

Exposure Misclassification Bias. As noted in "Sources of 
Epidemiologic Bias," nondifferential misclassification of exposure 
status in individual-level studies nearly always results in bias toward 
the null value; e.g., the estimated rate ratio will be closer to one than 
is the true rate ratio. In multiple-group ecologic studies, however, this 
principle does not hold when the exposure variable is formed from the 
aggregated observations of all individuals in each region (e.g., the 
proportion exposed). Brenner et al. (93) have shown that 
nondifferential misclassification of a binary exposure within groups 
usually leads to overestimation of the rate ratio (away from the null 
value) in ecologic studies, which can be severe. This apparent 
contradiction between ecologic and individual-level studies can be 
understood by considering just two regions. Nondifferential exposure 
misclassification in both regions will produce an estimated difference 
in exposure prevalence that is smaller than the true difference. 
Consequently, the estimated regression coefficient (slope) for the 
exposure variable in a linear ecologic model will be overestimated, 
leading to overestimation of the rate ratio. Little is known about the 
impact in ecologic studies of within-group error in measuring 
continuous or multiple-category exposures. 

Confounder Misclassification. In studies conducted at the 
individual level, misclassification of a confounder, if nondifferential 
with respect to exposure and disease, will usually reduce our ability to 
control for the confounder in the analysis (94,95). That is, adjustment 
will not completely eliminate the bias due to the confounder. In 
ecologic studies, however, nondifferential misclassification of a binary 
confounder within groups does not affect our ability to control for that 



confounder (96). Thus, surprisingly, nondifferential misclassification 
of a confounder is less problematic in ecologic studies, provided there 
is no ecologic bias, than in individual-level studies. 

Collinearity. It is probably more common in ecologic studies than in 
other studies for two or more predictors to be highly correlated across 
groups (63,97,98). This issue is particularly relevant with 
environmental factors, such as the associations between levels of 
different contaminants in air or drinking water or associations 
between different socioeconomic indicators. The implication of such 
collinearities is that it is very difficult, perhaps impossible, to separate 
these effects statistically; analyses yield model coefficients with very 
large variances and often severely distorted estimates of effect. 

Temporal Ambiguity of Cause and Effect. Use of incidence data in 
a cohort study usually implies that disease occurrence did not 
precede exposure to the hypothesized risk factor. Yet, in multiple-
group or time-trend ecologic studies use of incidence data provides 
no such assurance against this temporal ambiguity (63). This 
inferential problem is most troublesome when it is possible for 
disease to influence exposure status either at the individual level (see 
"Cohort Study") or at the ecologic level (e.g., interventions designed 
to reduce exposure levels in areas with high rates of disease). 

The problem of temporal ambiguity in ecologic studies is further 
complicated by an unknown or variable latent period between 
exposure and disease occurrence. The investigator can only attempt 
to deal with this problem by establishing a specific lag period between 
observations of average exposure and disease rate. Even when the 
average latency is known, however, appropriate data may not be 
available to accommodate the desired lag. 

Migration. Migration of individuals into or out of the base population 
can cause selection bias in any type of epidemiologic study, because 
migrants and nonmigrants may differ on both exposure prevalence 
and disease risk. Little is known about the magnitude of this bias or 
how it can be reduced in ecologic studies, especially when studying 
diseases with long latent periods. One approach might be to use 
larger geographic groups (e.g., states instead of counties as units of 
analysis) (99). Unfortunately, this approach is also likely to increase 



the potential for severe ecologic bias, because it makes the groups 
less homogeneous with respect to exposure (see "Ecologic Bias"). 
Another approach might be to incorporate available data on the 
distributions of residential durations within regions, but this approach 
needs more work to provide a reliable method of bias reduction. 

Current Issues and Recommendations 

A general goal of epidemiologic research is to obtain the most 
information about possible health effects with minimal and/or 
available resources. Given the difficulties in estimating effects of 
specific environmental exposures in human populations, this goal is 
not easily obtained and optimal research strategies are not readily 
identified. Below, we highlight several current methodologic issues in 
environmental epidemiology and make some recommendations for 
future work. 

Study Design. No single design best meets the objectives of every 
epidemiologic study. In practice, study objectives are shaped by 
many factors--current knowledge, previous findings, institutional 
mandates, societal values, personal preferences, etc. Although a 
prospective cohort study might be expected, in general, to produce 
less bias than would a hospital-based (proportional) case-control 
study, the latter design might be a rational choice in certain situations. 
Even an ecologic design, despite its limitations, might be appropriate; 
it may be the only practical option at a given time. 

The challenges of environmental epidemiology, therefore, cannot be 
solved simply by advocating the use of certain, more expensive study 
designs. In addition to committing more resources to the conduct of 
epidemiologic research, we need to develop new designs to meet 
specific objectives more efficiently. For example, in "Case-Control 
Study," we discussed the use of two-stage designs to investigate 
associations between rare diseases and rare exposures and to 
control for covariates that are relatively expensive to measure. New 
approaches are also needed to identify intermediate variables in 
observational designs, to evaluate interaction effects (effect 
modification) more efficiently, and to deal with the problems of 
nonparticipation, nonresponse, and noncompliance. Another need in 
environmental epidemiology is to understand better the relationship 



between acute biological changes and chronic health effects. For 
example, we might combine experimental and observational methods 
to determine the extent to which short-term changes in pulmonary 
function caused by exposure to air pollutants lead to chronic 
respiratory disease (2). 

Bias Reduction. In nonrandomized studies, it is important for the 
investigator to deal with confounding in the analysis. This is achieved 
by identifying potential confounders in the design phase and 
measuring them accurately in the study population. The prevention of 
selection bias, however, is not so straightforward because it depends 
on identifying all cases that occur in a well-defined (base) population 
at risk. When new cases occur infrequently or when it is otherwise 
impractical to re-examine enough individuals to detect all new events, 
the prevention of selection bias depends on population surveillance 
and monitoring systems, such as population-based tumor registries 
and industrial surveillance. Although these systems may be 
expensive to implement and operate, they are often necessary to 
reduce the threat of selection bias. 

Unfortunately, population-based systems may not be sufficient to 
prevent selection bias with diseases for which detection depends 
critically on care seeking, symptom reporting, and complex differential 
diagnoses. A key problem is that not all persons with an illness 
recognize their symptoms and seek medical attention. Thus, 
exposure effects observed for these diseases in epidemiologic 
studies might reflect the effects of the exposure on illness behavior as 
well as the effects on illness occurrence (100). 

Another solution to incomplete or inadequate case detection is to 
control analytically for methodologic covariates that reflect differences 
in illness behavior. For example, we might measure the individual's 
tendency to seek medical care and treat this variable as a 
confounder. The measurement of this covariate should be 
independent of disease status; otherwise, covariate adjustment will 
probably lead to bias toward the null value. This approach needs 
further development and evaluation. 

An alternative strategy for studying diseases that are difficult to detect 
in large populations, such as musculoskeletal conditions, is another 



type of two-stage design. In the first stage, a large population is 
surveyed cross-sectionally or longitudinally by questionnaires or 
interviews to identify persons with symptoms characteristic of the 
disease. The second stage involves case-control sampling of the 
population to compare persons with and without these symptoms 
(i.e., cases and controls). In this stage, subjects are given more 
definitive diagnostic tests to identify true cases of the disease. By 
comparing diagnostic test results between selected cases and 
controls, the investigators can assess the validity of their symptom-
based criteria, suggest improvements in clinical diagnosis, and 
estimate exposure effects. The latter objective requires the 
development of statistical methods appropriate for the sampling 
strategy. 

Quality of Measurement. As noted earlier (see "Problems in 
Environmental Epidemiology"), a major challenge in environmental 
epidemiology is to measure accurately each individual's exposure to 
suspected and known risk factors for the disease under study. In the 
absence of previously validated and inexpensive methods for 
measuring exposures and covariates in large groups, it has become 
common practice to use more than one method or source of 
information to measure these variables. Nevertheless, it usually is not 
clear how different methods or sources of information should be 
combined or what data should be combined to minimize 
measurement errors and estimation bias (4,101,102). We need more 
methodologic research in this area to provide guidelines for the 
measurement of specific exposures in particular types of populations. 
One approach that might be pursued with environmental exposures is 
to combine ecologic data with self-reported data on individual 
behaviors. For example, suppose we collect ecologic data on 
pesticide spraying and distribution throughout a large region. We 
could then obtain from subjects the location of their homes; the type 
and location of their work; their use of drinking water; and how often 
they swim, fish, and participate in other activities that would affect 
their exposure to pesticides in the region. 

Frequently, an accurate method does exist for measuring an 
exposure, but the application of this method to all subjects in a 
population is prohibitively expensive or infeasible. In such cases, 
many investigators rely on less accurate methods for the total sample 



and use the more accurate method in a subsample of subjects. 
Assuming the accurate method is perfectly valid (i.e., the gold 
standard), the results of the validation substudy are used to quantify 
the amount of measurement error, which is then used in the total 
sample to correct for misclassification bias involving the imperfect 
measure of exposure. Some important issues need to be considered 
to make this approach advantageous. First, how many subjects and 
what proportion of the total sample should be included in the 
substudy (103,104)? Second, how should we correct for exposure 
misclassification in the analysis, especially when the accurate method 
may not be perfectly valid or when the subsample is not 
representative of the total sample (see also Prentice and Thomas, 
this issue)? 

Ecologic Inference. Because of inherent problems of measurement, 
most epidemiologic studies of environmental exposures are at least 
partly ecologic. When all data, except a single exposure, are obtained 
at the individual level, however, the ecologic problem amounts to 
possible misclassification bias, which is well understood and often 
predictable. Yet, when the unit of analysis is the group, the resulting 
ecologic bias is far less predictable and can be relatively severe in 
magnitude, especially when other sources of bias are present. Thus, 
in general, ecologic analyses do not provide very accurate estimates 
of effect. To make ecologic findings more informative, therefore, we 
need more theoretical work to specify the conditions for which 
ecologic estimates can be expected to be reasonably valid. With this 
information, we might then collect additional data to check those key 
assumptions or to correct ecologic estimates. For example, by 
obtaining detailed individual-level data on the exposure and certain 
covariates in samples of selected groups, we might be able to 
determine the limits of ecologic bias in estimating the exposure effect 
(see "Control for Covariates" and Prentice and Thomas, this issue). 

Essentially, ecologic bias (aside from within-group bias) occurs 
because group affiliation or the average exposure level of the group 
affects disease occurrence independently of exposure status at the 
individual level (see "Ecological Bias"). The structural effects of such 
ecologic variables, if they can be separated from other effects at the 
individual level, might be informative, rather than just a source of 
error. Thus, by including both ecologic and individual-level predictors 



(possibly of the same exposure) in the analysis, we might enhance 
our understanding of disease occurrence. This type of contextual or 
multilevel analysis has been used extensively in social science 
research (105-108) but rarely in epidemiologic research (109). In 
addition, if the effect of a risk factor is known from previous research, 
the results of an ecologic analysis involving that risk factor could be 
used to evaluate the potential or realized impact of a population 
intervention, which may not be completely estimable at the individual 
level (63). A more profound understanding of ecologic bias, therefore, 
could yield benefits to other public-health research. 

Gene-Environment Interactions. Because both genetic and 
environmental factors contribute to the etiology of most diseases, we 
would typically expect factors of each type to confound and/or modify 
the effect of the other. We know, for example, that a combination of 
both environmental/personal factors and genetic susceptibilities are 
sufficient for the development of certain diseases. Yet standard 
methods of epidemiologic research and population genetics have not 
been well integrated (110). As indicated in "Ecological Bias," we need 
new methods for incorporating environmental variables in genetic 
(e.g., linkage) analyses of pedigree data. We also need to understand 
better the relationship between those parameters estimated in 
pedigree studies and the effect parameters estimated in standard 
epidemiologic studies; and we need to understand better how the 
estimates of gene-environment interactions in pedigree studies are 
biased by confounding, measurement error, and family selection 
(ascertainment). With this understanding, we can devise new 
methods to prevent or control bias. Analogously, the use of family 
data in standard epidemiologic designs (e.g., history of disease 
and/or its risk factors in relatives) requires further development in 
order to handle differences in family size and composition among 
subjects. With the recent advances in molecular genetics, the 
integration of epidemiology and population genetics is likely to 
become more important in the future. 

Sample Size and Power. As noted in "Problems in Environmental 
Epidemiology," epidemiologic studies of environmental exposures 
often require large sample sizes to detect risk-factor effects with 
sufficiently small statistical error. To address this concern, 
researchers are usually expected to justify their proposed sample 



size by estimating the power of their study for testing one or more 
major hypotheses (i.e., the probability of detecting an association of 
at least a certain magnitude with a designated Type I error--alpha 
level typically set at 5%). This is a rather straightforward procedure 
when the power estimation is applied to two dichotomous variables 
(exposure and disease) (1,4,111). Yet all observational studies 
require more complicated analyses to make causal inferences -- e.g., 
to deal with polytomous, continuous, or time-dependent exposures; 
covariate adjustment; the assessment of interaction effects; 
matching; and other special design features. Although methods of 
power estimation do exist for many of these complicating features, 
they require additional specifications (assumptions) about which the 
investigator is not likely to have adequate information. Further 
development of these methods would be useful, therefore, to identify 
techniques that are both practical and informative in specific 
situations, including ecologic studies for which sample size 
requirements have received little attention. 

One parameter the investigator must specify to justify the proposed 
sample size is the magnitude of effect expected in the data or the 
minimum effect regarded as important to detect. In the absence of 
previous epidemiologic studies involving similar exposure levels, the 
expected effect is generally specified rather arbitrarily (e.g., a rate 
ratio of 2). Sometimes, however, there are exposure-response 
findings from animal studies or occupational studies with higher 
exposure levels, which could be used to estimate the environmental 
exposure effect expected in the base population. This approach, 
which also requires further development, might allow research funds 
to be allocated more judiciously. 

Data Analysis. Many of the recent developments and ideas for new 
study designs and data collection that were discussed in this article 
require parallel developments in statistical methods. For example, the 
analyst might have to deal with complex sampling strategies (as in 
two-stage designs); missing, misclassified, and/or aggregated data 
on relevant variables; time-dependent covariates; lag periods 
between first exposure and disease detection; incomplete case 
detection; and a limited sample size that severely restricts the 
number of covariates treated simultaneously. Several of these issues 



are covered further by Hatch and Thomas and by Prentice and 
Thomas in this issue. 
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